Pflügers Archiv

, Volume 336, Issue 1, pp 48–59 | Cite as

The components of the sodium efflux in cardiac Purkyně fibres

  • Suzanne Bosteels
  • E. Carmeliet
Article

Summary

  1. 1.

    A study was made of sodium efflux from cardiac Purkyně fibres, and its sensitivity to external Na, K, pH and to inhibitors of the sodium pump.

     
  2. 2.

    Na efflux was found to be relative insensitive to Ke. When the external K concentration was suddenly increased, the rate coefficient rose only temporarily.

     
  3. 3.

    In contrast, the Na efflux seemed to be sensitive to the external Na. In zero sodium one third of the efflux was blocked.

     
  4. 4.

    This Nae-sensitive efflux is completely blocked by ethacrynic acid, reduced by ouabain and not modified by doubling the internal Na.

     
  5. 5.

    Acidification of the bathing fluid decreased the Na efflux if the preparation was bathed in Na- or choline-Tyrode. In the presence of ouabain the pH effect disappeared.

     

Key words

Cardiac Cells Components of Na Efflux Active Transport Exchange Diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaugé, L. A., Sjodin, R. A.: The dual effect of lithium ions on sodium efflux in skeletal muscle. J. gen. Physiol.52, 408–423 (1968).Google Scholar
  2. Bittar, E. E., Tong, E. S.: Sensitivity of Na efflux from single barnacle muscle fibers to external H+ ions. Life Sci.10, 43–48 (1971).Google Scholar
  3. Bosteels, S., Carmeliet, E.: Estimation of intracellular Na concentration and transmembrane Na flux in cardiac Purkyně fibres. Pflügers Arch.336, 35–47 (1972).Google Scholar
  4. Carmeliet, E. E.: Chloride and potassium permeability in cardiac Purkinje fibres. Bruxelles: Presses Académiques Européennes Société Coopérative 1961.Google Scholar
  5. Conway, E. J.: Critical energy barriers in the excretion of sodium. Nature (Lond.)187, 394–397 (1960).Google Scholar
  6. Conway, E. J., Kernan, R. P., Zadunaisky, J. A.: The sodium pump in skeletal muscle in relation to energy barriers. J. Physiol. (Lond.)155, 263–279 (1961).Google Scholar
  7. Daniel, E. E., Robinson, K.: Effects of inhibitors of active transport on22Na and42K movements and on nucleotide levels in rat uteri at 25° C. Canad. J. Physiol. Pharmacol.49, 178–204 (1971).Google Scholar
  8. De Weer, P.: Effects of intracellular adenosine-5′-diphosphate and orthophosphate on the sensitivity of sodium efflux from squid axon to external sodium and potassium. J. gen. Physiol.56, 583–620 (1970).Google Scholar
  9. Erlij, D., Leblanc, G.: The effects of ethacrynic acid and other sulfhydryl reagents on sodium fluxes in frog muscle. J. Physiol. (Lond.)214, 327–347 (1971).Google Scholar
  10. Garrahan, P. J., Glynn, I. M.: The behaviour of the sodium pump in red cells in the absence of external potassium. J. Physiol. (Lond.)192, 159–174 (1967).Google Scholar
  11. Haas, H. G., Glitsch, H. G., Kern, R.: Zum Problem der gegenseitigen Beeinflussung der Ionenfluxe am Myokard. Pflügers Arch. ges. Physiol.281, 282–299 (1964).Google Scholar
  12. Haas, H. G., Hantsch, F., Otter, H. P., Siegel, G.: Untersuchungen zum Problem des aktiven K- und Na-Transports am Myokard. Pflügers Arch. ges. Physiol.294, 114–168 (1967).Google Scholar
  13. Hays, E. T., Horowicz, P.: Influence of external pH and Be+2 on Na efflux from frog sartorius muscle. Fed. Proc.29, 455 Abs. (1970).Google Scholar
  14. Hoffman, J. F., Kregenow, F. M.: The characterization of new energy dependent cation transport processes in red blood cells. Ann. N. Y. Acad. Sci.137, 566–576 (1966).Google Scholar
  15. Keynes, R. D.: Some further observations on the sodium efflux in frog muscle. J. Physiol. (Lond.)178, 305–325 (1965).Google Scholar
  16. Keynes, R. D., Steinhardt, R. A.: The components of the sodium efflux in frog muscle. J. Physiol. (Lond.)198, 581–599 (1968).Google Scholar
  17. Keynes, R. D., Swan, R. C.: The effect of external sodium concentration on the sodium fluxes in frog skeletal muscle. J. Physiol. (Lond.)147, 591–625 (1959).Google Scholar
  18. Lubowitz, H., Whittam, R.: Ion movements in human red cells independent of the sodium pump. J. Physiol. (Lond.)202, 111–131 (1969).Google Scholar
  19. Mond, R.: Umkehr der Anionenpermeabilität der roten Blutkörperchen in eine elektive Durchlässigkeit für Kationen. Ein Beitrag zur Analyse der Zellmembranen. Pflügers Arch. ges. Physiol.217, 618–630 (1927).Google Scholar
  20. Sachs, J. R.: Ouabain-insensitive sodium movements in the human red blood cell. J. gen. Physiol.57, 259–282 (1971).Google Scholar
  21. Ussing, H. H.: Transport of ions across cellular membranes. Physiol. Rev.29, 127–155 (1949).Google Scholar
  22. Vassalle, M.: Electrogenic suppression of automaticity in sheep and dog Purkinje fibers. Circulat. Res.27, 361–377 (1970).Google Scholar
  23. Villamil, M. F., Kleeman, C. R.: The effect of ouabain and external potassium on the ion transport of rabbit red cells. J. gen. Physiol.54, 576–588 (1969).Google Scholar
  24. Weidmann, S.: Elektrophysiologie der Herzmuskelfaser. Bern-Stuttgart: H. Huber 1956.Google Scholar
  25. Whittam, R., Wheeler, K. P.: Transport across cell membranes. Ann. Rev. Physiol.32, 21–60 (1970).Google Scholar
  26. Whittembury, G.: Sodium and water transport in kidney proximal tubular cells. J. gen. Physiol.51, 303S-314S. (1968).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Suzanne Bosteels
    • 1
  • E. Carmeliet
    • 1
    • 2
  1. 1.Institute of PhysiologyUniversity of LouvainLouvainBelgium
  2. 2.Laboratorium voor FysiologieLouvainBelgium

Personalised recommendations