Pflügers Archiv

, Volume 385, Issue 2, pp 131–136 | Cite as

Effect of carbachol on radiosodium uptake by dispersed pancreatic acinar cells

  • James W. PutneyJr.
  • Claudia A. Landis
  • Cynthia M. van de Walle
Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands

Abstract

The effects of carbachol on uptake of22Na by enzymatically dispersed rat pancreatic acinar cells were determined. Carbachol caused a slight but significant increase in uptake of22Na by the cells in the presence or absence of ouabain (10−3 M). A maximal response was obtained with 10−6 M carbachol. The effects of carbachol were blocked by 10−5 M atropine. Caerulein (10−7 M) also stimulated22Na uptake, while epinephrine (10−4 M) and substance P (10−7 M) did not. Carbachol did not stimulate22Na uptake in the absence of extracellular Ca, although Ca omission significantly clevated basal22Na uptake. The divalent cationophore A-23187 caused Ca-dependent22Na uptake at 20 μM concentration but not at 0.3 μM. These results, when considered with earlier reports by others, suggest that muscarinic receptor activation leads to an increase in permeability of the acinar cell membrane to Na, and that Ca may be second messenger for this effect.

Key words

Pancreas Calcium Sodium Carbachol Caerulein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amsterdam, A., Jamieson, J. D.: Structural and functional characterization of isolated pancreatic exocrine cells. Proc. Natl. Acad. Sci. USA69, 2028–2032 (1972)Google Scholar
  2. Bernfield, P.: Amylases, α and β. In: Methods in enzymology, Vol. 1 (S. P. Colowick, N. O. Kaplan, eds.), pp. 149. New York: Academic Press 1955Google Scholar
  3. Case, R. M.: The role of calcium and of cyclic AMP in pancreatic secretory processes. In: Secretory mechanisms of exocrine glands (N. A. Thorn, O. H. Petersen, eds.), pp. 344–354. Copenhagen: Munksgaard 1974Google Scholar
  4. Case, R. M.: Synthesis, intracellular transport and discharge of exportable proteins in the pancreatic acinar cell and other cells. Biol. Rev.53, 211–354 (1978)Google Scholar
  5. Case, R. M., Clausen, T., Scott-Wilson, C. J.: Extracellular sodium and stimulus-secretion coupling in the rat exocrine pancreas. J. Physiol. (Lond.)284, 47p-48p (1978)Google Scholar
  6. Chandler, D. E., Williams, J. A.: Intracellular uptake and α-amylase and lactate dehydrogenase releasing actions of the divalent cation ionophore A-23187 in dissociated pancreatic acinar cells. J. Membr. Biol.32, 201–230 (1977)Google Scholar
  7. Gardner, J. D., Jackson, M. J.: Regulation of amylase release from dispersed pancreatic acinar cells. J. Physiol. (Lond.)270, 439–454 (1977)Google Scholar
  8. Iwatsuki, N., Petersen, O. H.: Pancreatic acinar cells: The acetylcholine equilibrium potential and its ionic dependency. J. Physiol. (Lond.)269, 735–751 (1977a)Google Scholar
  9. Iwatsuki, N., Petersen, O. H.: Acetylcholine-like effects of intracellular calcium application in pancreatic acinar cells. Nature268, 147–149 (1977b)Google Scholar
  10. Kanagasuntheram, P., Randle, R. J.: Calcium metabolism and amylase release in rat parotid acinar cells. Biochem. J.160, 547–564 (1976)Google Scholar
  11. Kanno, T., Yamamoto, M.: Differentiation between the calciumdependent effects of cholecystokinin-pancreozymin and the bicarbonate-dependent effects of secretin in exocrine secretion of the rat pancreas. J. Physiol. (Lond.)264, 787–799 (1977)Google Scholar
  12. Landis, C. A., Putney, J. W., Jr.: Calcium and receptor regulation of radiosodium uptake by dispersed rat parotid acinar cells. J. Physiol. (Lond.) (in press, 1980)Google Scholar
  13. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem.193, 265–275 (1951)Google Scholar
  14. Mangos, J. A., McSherry, N. R., Butcher, F., Irwin, K., Barber, T.: Dispersed rat parotid acinar cells. I. Morphological and functional characterization. Am. J. Physiol.229, 553–559 (1975)Google Scholar
  15. Parod, R. J., Putney, J. W., Jr.: Muscarinic and alpha-adrenergic stimulation of Na and Ca uptake by dispersed lacrimal cells. Am. J. Physiol. (in press, 1980a)Google Scholar
  16. Parod, R. J., Putney, J. W., Jr.: Stimulus-permeability coupling in the rat lacrimal gland. Am. J. Physiol. (in press, 1980b)Google Scholar
  17. Petersen, O. H.: Electrophysiology of mammalian gland cells. Physiol. Rev.56, 535–577 (1976)Google Scholar
  18. Petersen, O. H., Iwatsuki, N.: The role of calcium in pancreatic acinar cell stimulus-secretion coupling: An electrophysiological approach. Ann. N. Y. Acad. Sci.307, 599–615 (1978)Google Scholar
  19. Petersen, O. H., Ueda, N.: Pancreatic acinar cells: The role of calcium in stimulus-secretion coupling. J. Physiol. (Lond.)254, 583–606 (1976)Google Scholar
  20. Petersen, O. H., Ueda, N.: Secretion of fluid and amylase in the perfused rat pancreas. J. Physiol. (Lond.)264, 819–835 (1977)Google Scholar
  21. Poulsen, J. H., Williams, J. A.: Effects of the calcium ionophore A-23187 on pancreatic acinar cell membrane potentials and amylase release. J. Physiol. (Lond.)264, 323–339 (1977)Google Scholar
  22. Putney, J. W., Jr.: Stimulus-permability coupling: Role of calcium in the receptor regulation of membrane permeability. Pharmacol. Rev.30, 209–245 (1978)Google Scholar
  23. Putney, J. W., Jr., van de Walle, C. M.: Effect of carbachol on ouabain-sensitive uptake of86Rb by dispersed lacrimal gland cells. Life Sci.24, 1119–1124 (1979)Google Scholar
  24. Putney, J. W., Jr., van de Walle, C. M., Leslie, B. A.: Receptor control of calcium influx in parotid acinar cells. Mol. Pharmacol.14, 1046–1053 (1978)Google Scholar
  25. Robberecht, P.: The role of cyclic nucleotides in pancreatic enzyme and electrolyte secretion. In: Stimulus-secretion coupling in the gastrointestinal tract (R. M. Case, H. Goebell, eds.), pp. 203–224. Baltimore: University Park Press 1976Google Scholar
  26. Schultz, I., Heil, K.: Ca2+ control of electrolyte permeability: Effect on Na+ fluxes in isolated membrane vesicles from the cat pancreas. Proceedings of the Symposium on Gastric Ion Transport, Uppsala, 1977. Acta Physiol. Scand., Special Supplement, 381–387 (1978)Google Scholar
  27. Ueda, N., Petersen, O. H.: The dependence of caerulein-evoked pancreatic fluid secretion on the extracellular calcium concentration. Pflügers Arch.370, 179–183 (1977)Google Scholar
  28. Williams, J. A.: The effect of the ionophore A-23187 on amylase release, cellular integrity and ultrastructure of mouse pancreatic acini. Cell Tiss. Res.186, 287–295 (1978)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • James W. PutneyJr.
    • 1
  • Claudia A. Landis
    • 1
  • Cynthia M. van de Walle
    • 1
  1. 1.Department of PharmacologyWayne State University, School of MedicineDetroitUSA

Personalised recommendations