Advertisement

Pflügers Archiv

, Volume 385, Issue 2, pp 95–104 | Cite as

A comparison of the response characteristics of cerebellar fastigial and vermal cortex neurons to sinusoidal stimulation of macular vestibular receptors

  • M. Stanojević
  • L. Erway
  • B. Ghelarducci
  • O. Pompeiano
  • W. D. WillisJr.
Excitable Tissues and Central Nervous Physiology

Abstract

  1. 1.

    The responses of neurons located in the rostral part of the fastigial nucleus to sinusoidal tilt of the animal were recorded in precollicular decerebrate cats and compared with those elicited by the same stimulation in Purkinje (P) cells located in the vermal cortex of the cerebellar anterior lobe. In particular, by fixing the head and the body of the animal to the tilting table and by rotating the animal around its longitudinal axis, it was possible to elicit a selective labyrinth input without eliciting a neck input.

     
  2. 2.

    Among the 60 fastigial neurons tested, 43 units responded to sinusoidal tilt at the frequency of 0.026 Hz and at the peak amplitude of displacement of 10°–15°. On the other hand, among 106 P-cells tested for a mossy fiber (MF) response to the labyrinth input, 32 units were affected by the same parameters of stimulation. In both instances the response consisted in a periodic modulation of the discharge frequency, which was related to the position of the animal. Most of the responses of the fastigial units to the labyrinth input were characterized by a peak excitation in phase with side-down tilt of the animal and by inhibition during side-up tilt, whereas most of the MF-responses of the P-cells to the labyrinth input showed just the opposite behavior.

     
  3. 3.

    The threshold amplitude of tilt responsible for these responses varied in different units from 1° to 3° at the frequency of 0.026 Hz. The sensitivity of the first harmonic of the unit responses to tilt, expressed in percentage change of the average firing rate per degree of displacement, corresponded on the average to 1.73±1.16, S.D., for the fastigal neurons and to 1.61±0.94, S.D., for the P-cells. These values did not change or were only slightly modified as a result of increasing amplitude of stimulation from 1°–3° to 15°–25° at a frequency of 0.026 Hz. Moreover, changes in amplitude of stimulation at the parameters reported above did not greatly modify the phase angle of the first harmonic of the responses relative to the side-down position of the animal. Units located in the medial corticonuclear zone of the cerebellum did not show any change in sensitivity and phase angle of the responses by increasing the frequency of tilt from 0.015 to 0.20 Hz at the fixed amplitude of 10°–15°, thus indicating that these responses depended upon stimulation of macular receptors. In other units, however, these changes in frequency of rotation modified the phase angle of the responses, which became related to velocity rather than to the positional signal, due to stimulation of semicircular canal receptors.

     
  4. 4.

    The observation that most of the responsive fastigial neurons increased their firing rate, while most of the responding P-cells located in the vermal cortex of the cerebellar anterior lobe decreased their firing rate during side-down rotation of the animal is discussed in relation to the postural changes of the limbs elicited during asymmetric stimulation of macular receptors.

     

Key words

Cerebellum Medial corticonuclear zone Macular vestibular input 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. M., Soechting, J. F., Terzuolo, C. A.: Dynamic relations between natural vestibular inputs and activity of forelimb extensor muscles in the decerebrate cat. I. Motor output during sinusoidal linear acceleration. Brain Res.120, 1–15 (1977)Google Scholar
  2. Anderson, J. H., Soechting, J. F., Terzuolo, C. A.: Role of vestibular inputs in the organization of motor output to forelimb extensors. In: Progress in brain research. Reflex control of posture and movement, Vol. 50 (R. Granit, O. Pompeiano, eds.), pp. 413–421. Amsterdam, New York, Oxford: Elsevier/North Holland Biomed. Press 1979Google Scholar
  3. Berthoz, A., Anderson, J.H.: Frequency analysis of vestibular influence on extensor motoneurons. I. Response to tilt in forelimb extensors. Brain Res.34, 370–375 (1971)Google Scholar
  4. Brodal, A.: Anatomy of the vestibular nuclei and their connections. In: Handbook of sensory physiology. Vestibular system. Part 1. Basic mechanisms, Vol. VI/1 (H. H. Kornhuber, ed.), pp. 239–352. Berlin, Heidelberg, New York: Springer 1974Google Scholar
  5. Brodal, A., Jansen, J.: Structural organization of the cerebellum. In: Aspects of cerebellar anatomy (Jansen, J., Brodal, A., eds.), pp. 285–495, Oslo: Johan Grundt Tanum 1954Google Scholar
  6. Brodal, A., Pompeiano, O., Walberg, F.: The vestibular nuclei and their connections. Anatomy and functional correlations. William Ramsay Henderson Trust Lecture, pp. VIII-193. Edinburgh, London: Oliver and Boyd 1962Google Scholar
  7. Chambers, W. W., Sprague, J. M.: Functional localization in the cerebellum. I. Organization in longitudinal cortico-nuclear zones and their contribution in the control of posture, both extrapyramidal and pyramidal. J. Comp. Neurol.103, 105–129 (1955)Google Scholar
  8. Corvaja, N., Pompeiano, O.: Identification of cerebellar corticovestibular neurons retrogradely labeled with horseradish peroxidase. Neuroscience4, 507–515 (1979)Google Scholar
  9. Coulter, J. D., Mergner, T., Pompeiano, O.: Effects of static tilt on cervical spinoreticular tract neurons. J. Neurophysiol.39, 45–62 (1976)Google Scholar
  10. Denoth, F., Magherini, P. C., Pompeiano, O., Stanojević, M.: Responses of Purkinje cells of the cerebellar vermis to neck and macular vestibular inputs. Pflügers Arch.381, 87–98 (1979)Google Scholar
  11. Eccles, J. C., Ito, M., Szentágothai, J.: The cerebellum as a neuronal machine, pp. 335. Berlin, Heidelberg, New York: Springer 1967Google Scholar
  12. Erway, L., Ghelarducci, B., Pompeiano, O., Stanojević, M.: Risposta dei neuroni cerebellari di Purkinje e fastigiali al tilt sinusoidale. Bol. Soc. Ital. Biol. Sper.53, n. 60 (1977)Google Scholar
  13. Erway, L., Ghelarducci, B., Pompeiano, O., Stanojević, M.: Responses of cerebellar fastigial neurons to afferent inputs from neck muscles and macular labyrinthine receptors. Arch. Ital. Biol.116, 173–204 (1978a)Google Scholar
  14. Erway, L., Ghelarducci, B., Pompeiano, O., Stanojević, M.: Responses of cerebellar fastigial neurons to stimulation of contralateral macular labyrinthine receptors. Arch. Ital. Biol.116, 205–224 (1978b)Google Scholar
  15. Erway, L., Ghelarducci, B., Pompeiano, O., Stanojević, M.: Response of Purkinje and fastigial nucleus neurons to sinusoidal tilt. Abstr. Midwinter Res. Meet., Assoc. Res. Otolaryng., St. Petersburg Beach, Florida, Jan. 30–Feb. 1, 1978 (1978c)Google Scholar
  16. Favilla, M., Ghelarducci, B., Hill, C. D., Spyer, K. M.: Vestibular inputs to the fastigial nucleus; evidence of convergence of macular and ampullar inputs. Pflügers Arch (in press 1980)Google Scholar
  17. Fernandez, C., Goldberg, J. M., Abend, W. K.: Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. J. Neurophysiol.35, 978–997 (1972)Google Scholar
  18. Fukushima, K., Peterson, B. W., Uchino, Y., Coulter, J. D., Wilson, V. J.: Direct fastigiospinal fibers in the cat. Brain Res.126, 538–542 (1977)Google Scholar
  19. Ghelarducci, B.: Responses of the cerebellar fastigial neurones to tilt. Pflügers Arch.344, 195–206 (1973)Google Scholar
  20. Ghelarducci, B., Pompeiano, O., Spyer, K. M.: Distribution of the neuronal responses to static tilts within the cerebellar fastigial nucleus. Arch. Ital. Biol.112, 126–141 (1974)Google Scholar
  21. Hellon, R. F.: The marking of electrode tip positions in nervous tissue. J. Physiol. (Lond.)214, 12P (1971)Google Scholar
  22. Hoshino, K., Pompeiano, O.: Responses of lateral vestibular neurons to stimulation of contralateral macular labyrinthine receptors. Arch. Ital. Biol.115, 237–261 (1977)Google Scholar
  23. Iosif, G., Pompeiano, O., Strata, P., Thoden, U.: The effects of stimulation of spindle receptors and Golgi tendon organs on the cerebellar anterior lobe. II. Response of Purkinje cells to sinusoidal stretch and contraction of hindlimb extensor muscles. Arch. Ital. Biol.110, 502–542 (1972)Google Scholar
  24. Ito, M., Udo, M., Mano, N., Kawai, N.: Synaptic action of the fastigiobulbar impulses upon neurones in the medullary reticular formation and vestibular nuclei. Exp. Brain Res.11, 29–47 (1970a)Google Scholar
  25. Ito, M., Yoshida, M., Obata, K., Kawai, N., Udo, M.: Inhibitory control of intracerebellar nuclei by the Purkinje cell axons. Exp. Brain Res.10, 64–80 (1970b)Google Scholar
  26. Lindsay, K. W., Roberts, T. D. M., Rosenberg, J. R.: Asymmetric tonic labyrinth reflexes and their interaction with neck reflexes in the decerebrate cat. J. Physiol. (Lond.)261, 583–601 (1976)Google Scholar
  27. Lindsay, K. W., Rosenberg, J. R.: The effect of cerebellectomy on tonic labyrinth reflexes in the forelimb of the decerebrate cat. J. Physiol. (Lond.)273, 76–77P (1977)Google Scholar
  28. Lund, S., Pompeiano, O.: Monosynaptic excitation of alpha-motoneurons from supraspinal structures in the cat. Acta Physiol. Scand.73, 1–21 (1968)Google Scholar
  29. Magnus, R.: Körperstellung, pp. XIII-740. Berlin: Springer 1924Google Scholar
  30. Peterson, B. W.: Distribution of neural responses to tilting within vestibular nuclei of the cat. J. Neurophysiol.33, 750–767 (1970)Google Scholar
  31. Pompeiano, O.: Functional organization of the cerebellar projection to the spinal cord. In: Progress in brain research. The cerebellum, Vol. 25 (C. A. Fox, R. S. Snider, eds.), pp. 282–321. Amsterdam: Elsevier Publ. Co. 1967Google Scholar
  32. Pompeiano, O.: Cerebello-vestibular interrelations. In: Handbook of sensory physiology. Vestibular system. Part 1. Basic mechanisms, Vol. VI/1 (H. H. Kornhuber ed.), pp. 417–476. Berlin, Heidelberg, New York: Springer 1974Google Scholar
  33. Pompeiano, O.: Vestibulo-spinal relationships. In: The vestibular system (R. F. Naunton ed.), pp. 147–180. New York, San Francisco, London: Academic Press 1975aGoogle Scholar
  34. Pompeiano, O.: Macular input to neurons of the spinoreticulocerebellar pathway. Brain Res.95, 351–368 (1975b)Google Scholar
  35. Pompeiano, O.: Cerebellar control of the vestibulospinal reflex arc. In: IFAC-Symposium of central mechanisms in bio- and ecosystems. Vol. 3. Visual and vestibular control of movements, pp. 130–142. Leipzig: 1977Google Scholar
  36. Pompeiano, O.: Neck and macular labyrinthine influences on the cervical spino-reticulocerebellar pathway. In: Progress in brain research. Reflex control of posture and movement, Vol. 50 (R. Granit, O. Pompeiano eds.), pp. 501–514. Amsterdam, New York, Oxford: Elsevier/North-Holland Biomed. Press 1979Google Scholar
  37. Pompeiano, O., Hoshino, K.: Responses to static tilts of lateral reticular neurons mediated by contralateral labyrinthine receptors. Arch. Ital. Biol.115, 211–236 (1977)Google Scholar
  38. Precht, W., Volkind, R., Blanks, R. H. I.: Functional organization of the vestibular input to the anterior and posterior cerebellar vermis of cat. Exp. Brain Res.27, 143–160 (1977)Google Scholar
  39. Shimazu, H., Precht, W.: Tonic and kinetic responses of cat's vestibular neurons to horizontal angular acceleration. J. Neurophysiol.28, 989–1013 (1965)Google Scholar
  40. Soechting, J. F., Anderson, J. H., Berthoz, A.: Dynamic relations between natural vestibular inputs and activity of forelimb extensor muscles in the decerebrate cat. III. Motor output during rotations in the vertical plane. Brain Res.120, 35–47 (1977)Google Scholar
  41. Voogd, J.: The cerebellum of the cat. Structure and fibre connections. Thesis, p. 215. Assen: Van Gorcum and Comp. N.V. 1964Google Scholar
  42. Walberg, F., Pompeiano, O., Brodal, A., Jansen, J.: The fastigiovestibular projection in the cat. An experimental study with silver impregnation methods. J. Comp. Neurol.118, 49–76 (1962)Google Scholar
  43. Wilson, V. J., Peterson, B. W.: Peripheral and central substrates of vestibulospinal reflexes. Physiol. Rev.58, 80–105 (1978)Google Scholar
  44. Wilson, V. J., Uchino, Y., Susswein, A., Fukushima, K.: Properties of direct fastigiospinal fibers in the cat. Brain Res.126, 543–546 (1977)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • M. Stanojević
    • 1
  • L. Erway
    • 1
  • B. Ghelarducci
    • 1
  • O. Pompeiano
    • 1
  • W. D. WillisJr.
    • 1
  1. 1.Istituto di Fisiologia Umana, Cattedra IIUniversità di PisaPisaItaly

Personalised recommendations