Pflügers Archiv

, Volume 362, Issue 1, pp 55–59 | Cite as

The dilatatory action of adenosine on pial arteries of cats and its inhibition by theophylline

  • Michael Wahl
  • Wolfgang Kuschinsky
Article

Summary

The effect of adenosine upon pial resistance vessels was studied using local microapplication from the perivascular side and measurement of vascular diameter. Concentration-response curves revealed a concentration-dependent dilatatory effect of adenosine between 10−7 and 10−3 M. The degree of dilatation was independent of initial vessel size (47–260 μ). The dilatations due to adenosine could be reduced by theophylline in a reversible competitive antagonism. Concentration-response curves for theophylline yielded no vascular reaction at concentrations of up to 10−5 M theophylline. From these data it is concluded that the pial arterial resting tone is not influenced under our experimental conditions by adenosine formed and released by brain tissue. The dilatations measured at high theophylline concentrations are apparently due to a mechanism different from the adenosine antagonism.

Key words

Pial arterial resistance Arterial resting tone Metabolic factors Cerebral blood flow Local regulation of pial arterial diameter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berne, R. M., Rubio, R., Curnish, R. R.: Release of adenosine from ischemic brain. Effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides. Circulat. Res.35, 262–271 (1974)Google Scholar
  2. 2.
    Bünger, R., Haddy, F. J., Gerlach, E.: Coronary responses to dilating substances and competitive inhibition by theophylline in the isolated perfused guinea pig heart. Pflügers Arch.358, 213–224 (1975)Google Scholar
  3. 3.
    Buyniski, J. P., Rapela, C. E.: Cerebral and renal vascular smooth muscle responses to adenosine. Amer. J. Physiol.217, 1660–1664 (1969)Google Scholar
  4. 4.
    Deuticke, B., Gerlach, G.: Abbau freier Nucleotide in Herz, Skelettmuskel, Gehirn und Leber der Ratte bei Sauerstoffmangel. Pflügers Arch. ges. Physiol.292, 239–254 (1966)Google Scholar
  5. 5.
    Dieckhoff, D., Kanzow, E.: Über die Lokalisation des Strömungswiderstandes im Hirnkreislauf. Pflügers Arch.310, 75–85 (1969)Google Scholar
  6. 6.
    Fink, B. R., Schoolman, M.: Arterial blood acid-base balance in unrestrained waking cats. Fed. Proc. (abstr.)21, 440 (1962)Google Scholar
  7. 7.
    Gottstein, U., Paulson, O. B.: The effect of intracarotid aminophylline infusion on the cerebral circulation. Stroke3, 560–565 (1972)Google Scholar
  8. 8.
    Gottstein, U., Held, K., Sebening, H., Steiner, K.: Is decrease of cerebral blood flow after intravenous injections of theophylline due to direct vasconstrictive action of the drug? Europ. Neurol.6, 153–157 (1971/72)Google Scholar
  9. 9.
    Herbert, D. A., Mitchell, R. A.: Blood gas tensions and acid-base balance in awake cats. J. appl. Physiol30, 434–436 (1971)Google Scholar
  10. 10.
    Herrschaft, H.: Regional cerebral blood flow changes effected by vasoactive substances. In: Cerebral vasc. disease (J. S. Meyer, H. Lechner, M. Reivich, D. Eichhorn, eds.), pp. 101–113. Stuttgart: Thieme 1973Google Scholar
  11. 11.
    Heiss, W. D.: Drug effects on regional cerebral blood flow in focal cerebrovascular disease. J. neurol. Sci.19, 461–482 (1973)Google Scholar
  12. 12.
    Kuschinsky, W., Wahl, M., Bosse, O., Thurau, K.: Perivascular potassium and pH as determinants of local pial arterial diameter in cats. Circulat. Res.31, 240–247 (1972)Google Scholar
  13. 13.
    Lugnier, C., Bertrand, Y., Stoclet, J. C.: Cyclic nucleotide phosphodiesterase inhibition and vascular smooth muscle relaxation. Europ. J. Pharmacol.19, 134–136 (1972)Google Scholar
  14. 14.
    Rubio, R., Berne, R. M.: Release of adenosine by the normal myocardium in dogs and its relationship to the regulation of coronary resistance. Circulat. Res.25, 407–415 (1969)Google Scholar
  15. 15.
    Rubio, R., Berne, R. M.: Relationships of adenosine concentration, lactate levels and oxygen supply in rat brain. Amer. J. Physiol.228, 1896–1902 (1975)Google Scholar
  16. 16.
    Rubio, R., Berne, R. M., Dobson, J. G.: Sites of adenosine production in cardiac and skeletal muscle. Amer. J. Physiol.225, 938–953 (1973)Google Scholar
  17. 17.
    Stefanovich, V., v. Pölnitz, M., Reiser, M.: Inhibition of various cyclic AMP phosphodiesterases by pentifylline and theophylline. Drug. Res.24, 1747–1751 (1974)Google Scholar
  18. 18.
    Stromberg, D. D., Fox, J. R.: Pressures in the pial arterial microcirculation of the cat during changes in systemic arterial blood pressure. Circulat. Res.31, 229–239 (1972)Google Scholar
  19. 19.
    Wahl, M., Kuschinsky, W., Bosse, O., Thurau, K.: Dependency of pial arterial and arteriolar diameter on perivascular osmolarity in the cat. A microapplication study. Circulat. Res.32, 162–169 (1973)Google Scholar
  20. 20.
    Wahl, M., Deetjen, P., Thurau, K., Ingvar, D. H., Lassen, N. A.: Micropuncture evaluation of the importance of perivascular pH for the arteriolar diameter on the brain surface. Pflügers Arch.316, 152–163 (1970)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Michael Wahl
    • 1
  • Wolfgang Kuschinsky
    • 1
  1. 1.Physiologisches Institut der UniversitätMünchenGermany

Personalised recommendations