Pflügers Archiv

, Volume 330, Issue 3, pp 271–276 | Cite as

A simple method of obtaining quasi-continuous frequency spectra of the input impedance of arterial systems

  • Th. Pasch
  • R. D. Bauer
Short Communications and Technical Notes

Summary

A simple method is described which permits a complete determination of the input impedance of the arterial system from a single flow and its accompanying pressure pulse. The method is based on the assumption that the pulse under consideration is a non-periodic function and not a periodic one. Thus, an approximation to the Fourier integral permits us to obtain a quasi-continuous frequency spectrum instead of the non-continuous spectrum provided by the usual Fourier analysis of natural pulses.

Key words

Input Impedance Fourier Analysis Arterial Pulses as Nonperiodic Functions Frequency Spectrum, Quasi-continuous 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergel, D. H., Milnor, W. R.: Pulmonary vascular impedance in the dog. Circulat. Res.16, 401–415 (1965).Google Scholar
  2. 2.
    Caro, C. G., McDonald, D. A.: The relation of pulsatile pressure and flow in the pulmonary vascular bed. J. Physiol. (Lond.)157, 426–453 (1961).Google Scholar
  3. 3.
    Gabe, I. T., Karnell, J., Porjé, I. G., Rudewald, B.: The measurement of input impedance and apparent phase velocity in the human aorta. Acta physiol. scand.61, 73–84 (1964).Google Scholar
  4. 4.
    Gregg, D. E., Khouri, E. M., Rayford, C. R.: Systemic and coronary energetics in the resting unanesthetized dog. Circulat. Res.16, 102–113 (1965).Google Scholar
  5. 5.
    Hardung, V.: Wellenwiderstand und Impedanzen der geraden Schlauchleitung. Arch. Kreisl.-Forsch.29, 77–88 (1958).Google Scholar
  6. 6.
    Kenner, T., Ono, K.: The low frequency input impedance of the renal artery. Pflügers Arch.324, 155–164 (1971).Google Scholar
  7. 7.
    Kenner, T., Wetterer, E.: Experimentelle Untersuchungen über die Pulsformen und Eigenschwingungen zweiteiliger Schlauchmodelle. Pflügers Arch. ges. Physiol.275, 594–613 (1962).Google Scholar
  8. 8.
    Macke, W.: Wellen — Ein Lehrbuch der theoretischen Physik, S. 34–36. Leipzig: Akademische Verlagsgesellschaft 1962.Google Scholar
  9. 9.
    McDonald, D. A.: Blood flow in arteries. London: E. Arnold 1960.Google Scholar
  10. 10.
    Mills, C. J., Gabe, I. T., Gault, J. H., Mason D. T., Ross, J., Jr., Braunwald, E., Shillingford, J. P.: Pressure-flow relationships and vascular impedance in man. Cardiovasc. Res.4, 405–417 (1970).Google Scholar
  11. 11.
    O'Rourke, M. F., Taylor, M. G.: Vascular impedance of the femoral bed. Circulat. Res.18, 126–139 (1966).Google Scholar
  12. 12.
    : Input impedance of the systemic circulation. Circulat. Res.20, 365–380 (1967).Google Scholar
  13. 13.
    Patel, D. J., DeFreitas, F. M., Fry, D. L.: Hydraulic input impedance to aorta and pulmonary artery in dogs. J. appl. Physiol.18, 134–140 (1963).Google Scholar
  14. 14.
    , Greenfield, Jr., J. C., Austen, W. G., Morrow, A. G., Fry, D. L.: Pressure-flow relationships in the ascending aorta and femoral artery of man. J. appl. Physiol.20, 459–463 (1965).Google Scholar
  15. 15.
    Ralston, A., Wilf, H.: Mathematical methods for digital computers, chapter 24. New York: John Wiley 1960.Google Scholar
  16. 16.
    Randall, J. E.: Statistical properties of pulsatile pressure and flow in the femoral artery of the dog. Circulat. Res.6, 689–698 (1958).Google Scholar
  17. 17.
    Taylor, M. G.: An approach to an analysis of the arterial pulse wave. II. Fluid oscillations in an elastic pipe. Phys. in Med. Biol.1, 321–329 (1957).Google Scholar
  18. 18.
    : An experimental determination of the propagation of fluid oscullations in a tube with a visco-elastic wall; Together with an analysis of the characteristics required in an electrical analogue. Phys. in Med. Biol.4, 63–82 (1959).Google Scholar
  19. 19.
    : The input impedance of an assembly of randomly branching elastic tubes. Biophys. J.6, 29–51 (1966).Google Scholar
  20. 20.
    : Use of random excitation and spectral analysis in the study of frequency-dependent parameters of the cardiovascular system. Circulat. Res.18, 585 to 595 (1966).Google Scholar
  21. 21.
    Wetterer, E., Kenner, T.: Grundlagen der Dynamik des Arterienpulses. Berlin Heidelberg-New York: Springer 1968.Google Scholar
  22. 22.
    Zurmühl, R.: Praktische Mathematik für Ingenieure und Physiker, S. 357–370. Berlin-Heidelberg-New York: Springer 1965.Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Th. Pasch
    • 1
  • R. D. Bauer
    • 1
  1. 1.II. Physiologisches Institut der Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations