Advertisement

Pflügers Archiv

, Volume 330, Issue 3, pp 195–205 | Cite as

Lactate elimination and O2 consumption of the liver in narcotized dogs

  • Kurt Kramer
  • Gerd Driessen
  • Heinz Brechtelsbauer
  • Birgit Gerbl
  • Ingrid Linke
Article

Summary

In chloralose-anaesthetized dogs hepatic blood flow and hepatic O2 consumption were determined under control conditions and during infusion of large amounts of lactic acid buffered to pH 7.4. The amounts of lactic acid were selected to correspond to those produced during heavy muscular exercise.
  1. 1.

    Hepatic blood flow was found to be in the order of 27±8 ml/kg body weight or 157±50.5 ml/min×100 g liver.

     
  2. 2.

    Hepatic oxygen consumption amounted to 8.1±2.1 ml/min×100 g liver.

     
  3. 3.

    Lactate infusion resulted in an increased O2 consumption of the liver which was linear with lactate extraction.

     
  4. 4.

    This increase of hepatic O2 consumption corresponded well to the O2 consumption of the whole animal.

     
  5. 5.

    32±8% of infused lactate was extracted by the liver. Oxidation of the remaining 70% is not reflected in the increased O2 consumption of the whole animal. It must therefore be oxidized preferentially in place of normally burned substances.

     
  6. 6.

    It is concluded that the so called “lactacid O2-debt” is only partly explained by hepatic oxidation of lactic acid processes. The major part is unexplained.

     

Key words

Lactate Infusion Liver Lactate Elimination Liver O2-Consumption Lactacid O2-Debt Hepatic Blood Flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barcroft, J., Shore, L. E.: The gaseous metabolism of the liver. I. In fasting and late digestion. J. Physiol. (Lond.)45, 296 (1912).Google Scholar
  2. Blalock, A., Mason, M. F.: Observations on blood flow and gaseous metabolism of liver of unanesthetized dogs. Amer. J. Physiol.117, 328 (1936).Google Scholar
  3. Bradley, St. E.: The hepatic circulation. In: Handbook of Physiology, Section 2: Circulation, Vol. 2, p. 1387. Washington: Amer. Physiol. Soc. 1963.Google Scholar
  4. Exton, J. H., Park, C. R.: Control of gluconeogenesis in liver. J. biol. Chem.242, 2622 (1967).Google Scholar
  5. Harvey, R. B., Brothers, A. J.: Renal extraction of para-aminohippurate and creatinine measured by continuous in vivo sampling of arterial and renal-vein blood. Ann. N. Y. Acad. Sci.102, 46 (1962).Google Scholar
  6. Hems, R., Ross, B. D., Berry, M. N., Krebs, H. A.: Gluconeogenesis in the perfused rat liver. Biochem. J.101, 284 (1966).Google Scholar
  7. Hochella, N. J., Weinhouse, S.: Automated Lactic acid determination in serum and tissue extracts. Analyt. Biochem.10, 304 (1965).Google Scholar
  8. Johansson, B., Jonsson, O.: Cell volume as a factor influencing electrical and mechanical activity of vascular smooth muscle. Acta physiol. scand.72, 201 (1969).Google Scholar
  9. Karetzky, M. S., Cain, S. M.: Oxygen uptake stimulation following Na-b(+) lactate infusion in anesthetized dogs. Amer. J. Physiol.216, 1486 (1969).Google Scholar
  10. Katz, M. L., Bergman, E. N.: Simultaneous measurements of hepatic and portal venous blood flow in the sheep and dog. Amer. J. Physiol.216, 946 (1969).Google Scholar
  11. Pratt, E. B., Burlick, F. D., Holmes, J. H.: Measurement of liver blood flow in unanesthetized dog using BSP dye method. Amer. J. Physiol.111, 471 (1952).Google Scholar
  12. Sapirstein, L. A., Reininger, E. J.: Catheter induced error in hepatic venous sampling. Circulat. Res.4, 493 (1956).Google Scholar
  13. Scholtholt, J.: Das Verhalten der Durchblutung der A. hepatica und der V. portae bei Steigerung des Stoffwechsels der Leber. Pflügers Arch.307, R 89 (1969).Google Scholar
  14. Scholz, R., Thurman, R. G., Williamson, J. Z.: Effect of ethanol oxidation on gluconeogenesis from alanine. In: Metabolic changes induced by ethanol, p. 166. G. Martin and Ch. Bode, eds. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  15. —, Zehner, J., Bücher, Th.: Gluconeogenese in der hämoglobinfrei perfundierten Rattenleber. Acta hepato-splenol. (Stuttg.)13, 376 (1966).Google Scholar
  16. Struck, E., Ashmore, J., Wieland, O.: Stimulierung der Gluconeogenese durch langkettige Fettsäuren und Glucagon. Biochem. Z.343, 107 (1965).Google Scholar
  17. Williamson, J. R., Jakob, A., Scholz, E.: Energy cost of gluconeogenesis in rat liver. Metabolism20, 13 (1971)Google Scholar
  18. —, Scholz, R., Browning, E. T.: Control mechanisms of gluconeogenesis and ketogenesis. J. biol. Chem.244, 4617 (1969).Google Scholar
  19. Zehner, J.: Über die Zellatmung des Leberparenchyms in Beziehung zu biosynthetischen Prozessen. Dr.-Dissertation, München 1969.Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Kurt Kramer
    • 1
  • Gerd Driessen
    • 1
  • Heinz Brechtelsbauer
    • 1
  • Birgit Gerbl
    • 1
  • Ingrid Linke
    • 1
  1. 1.Physiologisches Institut der Universität MünchenMünchenGermany

Personalised recommendations