Pflügers Archiv

, Volume 320, Issue 2, pp 111–119 | Cite as

Hydrogen exchange through the pial vessel wall and its meaning for the determination of the local cerebral blood flow

  • K. Stosseck


In anaesthetized cats clearances of inhaled hyrogen were measured by means of microelectrodes in the lumen and at the wall of pial vessels, in the surrounding subarachnoid space, as well as in the cerebral cortex. The following results were obtained:
  1. 1.

    In the environment of pial arteries the H2-clearance takes place considerably faster than in the cerebral cortex or in the subarachnoid space without visible vessels.

  2. 2.

    The liquor space covered by glass foils is washed out slowly. The desaturation process corresponds to an “apparent cerebral blood flow” of about 20 ml/100g×min.

  3. 3.

    When veins and arteries are situated in narrow vicinity a shunt diffusion of hydrogen occurs, since in both types of vessels almost identical clearance curves were recorded.

  4. 4.

    From the aorta to the small pial arteries (60 μm diameter) the clearance profile changes dependent on the localization. This is due to the hydrogen diffusion exchange with the surrounding tissue. When different arterial clearance curves are used as an input function for the determination of the local blood flow, tissue blood flow values differ from 25% to more than 100%.



Brain Hydrogen Polarography Regional Blood Flow 


Gehirn Wasserstoff Polarographie Regionale Durchblutung 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aukland, K.: Hydrogen polarography in measurement of local blood flow; theoretical and empirical basis. Acta neurol. scand. Suppl.14, 42 (1965).Google Scholar
  2. 2.
    —, Akre, S., Leraand, S.: Arteriovenous countercurrent exchange of hydrogen gas in skeletal muscle. Scand. J. clin. Lab. Invest.19, 73 (1967).Google Scholar
  3. 3.
    —, Bower, B. F., Berliner, W.: Measurement of local blood flow with hydrogen gas. Circulat. Res.14, 164 (1964).Google Scholar
  4. 4.
    Fieschi, C., Nardini, M., Bartolini, A.: The hydrogen gas method to measure local blood flow in subcortical structures of the brain with a comparative study with the14C-antipyrine method. Exp. Brain Res.7, 111 (1969).Google Scholar
  5. 5.
    Lübbers, D. W.: Regional cerebral blood flow and microcirculation. Blood flow through organs and tissues, p. 162. Edinburgh-London: E. & S. Livingstone Ltd. 1968.Google Scholar
  6. 6.
    —, Baumgärtl, H.: Herstellungstechnik von palladinierten Pt-Stichelektroden (1–5 μm Außendurchmesser) zur polarographischen Messung des Wasserstoffdruckes für die Bestimmung der Mikrodurchblutung. Pflügers Arch. ges. Physiol.294, 39 (1967).Google Scholar
  7. 7.
    ——, Fabel, H., Huch, A., Kessler, M., Kunze, K., Riemann, H., Seiler, D., Schuchhardt, S.: Principle of construction and application of various platinum electrodes. Progr. Resp. Res.3, 136 (1969).Google Scholar
  8. 8.
    Siesjö, B. K., Thews, G.: Ein Verfahren zur Bestimmung der CO2-Leitfähigkeit, des CO2-Diffusionskoeffizienten und des scheinbaren CO2-Löslichkeitskoeffizienten im Gehirngewebe. Pflügers Arch. ges. Physiol.276, 192 (1962).Google Scholar
  9. 9.
    Thews, G.: Ein Verfahren zur Bestimmung des O2-Diffusionskoeffizienten, der O2-Leitfähigkeit und des O2-Löslichkeitskoeffizienten im Gehirn. Pflügers Arch. ges. Physiol.271, 227 (1960).Google Scholar
  10. 10.
    Wodick, R., Lübbers, D. W., Grunewald, W.: Auswertverfahren zur Bestimmung der Organdurchblutung nach Atmung von Wasserstoffgemischen. Pflügers Arch.307, 51 (1969).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • K. Stosseck
    • 1
  1. 1.Max-Planck-Institut für ArbeitsphysiologieDortmund

Personalised recommendations