Skip to main content

Advertisement

Log in

The ultrastructure of the normal human skeletal muscle

A morphometric analysis on untrained men, women and well-trained orienteers

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Muscle biopsies were taken from the middle part of the vastus lateralis muscle of 9 men, who were not regularly involved in endurance training (M, average\(\dot V_{{\text{O}}_{\text{2}} } \) max=61.3 ml/min·kg), 3 sedentary women (W,\(\dot V_{{\text{O}}_{\text{2}} } \)max=43.7 ml/min·kg) and 5 well trained orienteers (TO,\(\dot V_{{\text{O}}_{\text{2}} } \) max=76.1 ml/min·kg). Morphometric analysis of 60 electron micrographs per biopsy gave the following significant differneces:

  1. 1.

    The volume density of central mitochondria was 1.47-fold higher in TO than in M, and 1.44-fold higher in M than in W.

  2. 2.

    The volume density of peripheric mitochondria was 3.22 times higher in TO compared to M.

  3. 3.

    The ratio of the central mitochondrial volume to the volume of myofibrils was 1.54-fold higher in TO compared to M, while the respective ratio was 1.49 for M compared to W.

  4. 4.

    The surface of the central mitochondria was 1.28-fold higher in TO than in M and 1.35-fold higher in M than in M.

  5. 5.

    The surface of mitochondrial cristae was higher by a factor of 1.62 in TO compared to M and 1.35 in M compared to W.

  6. 6.

    The central mitochondria were larger in TO compared to M by a factor of 1.12.

  7. 7.

    The volume density of intracellular lipid (triglyceride droplets), was 2.5-fold higher in TO than in M.

    There were highly significant correlations between\(\dot V_{{\text{O}}_{\text{2}} } \) max and volume density of central mitochondria (r=0.82), surface of mitochondrial cristae (r=0.80) and the ratio of mitochondrial volume to myofibrillar volume (r=0.78).

    No quantitative changes could be observed in mitochondrial fine structure. Neither volume density of sarcoplasma nor volume and surface density of the tubular system showed any difference as a function of training and sex.

    It is postulated that

    1. a)

      an individual's maximum oxygen intake is limited not only by the capacity of the oxygen transport system but also by the oxidative capacity of mitochondria in the skeletal muscles, and

    2. b)

      the skeletal muscle of trained athletes contains a much higher quantity of intracellular lipids (triglyceride droplets) as a substrate directly available for energy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Åstrand, P. O., Rodahl, K.: Textbook of work physiology. New York-St.Louis-San Francisco-London-Sydney-Toronto-Mexico-Panama: McGraw-Hill 1970

    Google Scholar 

  2. Barnard, R. J., Edgerton, V. R., Peter, J. B.: Effect of exercise on skeletal muscle. I. Biochemical and histochemical properties. J. appl. Physiol.28, 762–770 (1970)

    Google Scholar 

  3. Bergström, J.: Muscle electrolytes in man. Scand. J. clin. Lab. Invest.14, Suppl. 68 (1962)

    Google Scholar 

  4. Fawcett, D. W.: An atlas of fine structure; the cell, its organelles and inclusions. Philadelphia-London: W. B. Saunders 1966

    Google Scholar 

  5. Gnägi, H. R., Burri, P. H., Weibel, E. R.: A multipurpose computer program for automatic analysis of stereological data obtained on electron micrographs. In: P. Favard (Editor): Proc. 7th Int. Congr. Electron Microscopy, Vol. I. Paris: Soc. Française de Microscopie Electronique 1970

  6. Gollnick, P. D., King, D. W.: Effect of exercise and training on mitochondria of rat skeletal muscle. Amer. J. Physiol.216, 1502–1509 (1969)

    Google Scholar 

  7. Gollnick, P. D., Januzzo, C. D., King, D. W.: Ultrastructural and enzyme changes in muscles with exercise. In: B. Pernow and B. Saltin (Edit.): Muscle metabolism during exercise. New York-London: Plenum Press 1971

    Google Scholar 

  8. Gollnick, P. D., Armstrong, R. B., Saubert, IV, C. W., Piehl, K., Saltin, B.: Enzyme activity and fiber composition in skeletal muscle of trained and untrained men. J. appl. Physiol.33, 312–319 (1972)

    Google Scholar 

  9. Gollnick, P. D., Piehl, K., Saubert IV, C. W., Armstrong, R. B., Saltin, B.: Diet, exercise, and glycogen changes in human skeletal muscle fibres. J. appl. Physiol.33, 421–425 (1972)

    Google Scholar 

  10. Hollmann, W.: Höchst- und Dauerleistungsfähigkeit des Sportlers. München: Joh. Ambr. Barth 1963

    Google Scholar 

  11. Holloszy, J. O.: Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J. biol. Chem.242, 2278–2282 (1967)

    Google Scholar 

  12. Holloszy, J. O., Oscai, L. B., Don, I. J. Molé, P. A.: Mitochondrial citric acid cycle and related enzymes: adaptive response to exercise. Biochem. biophys. Res. Commun.40, 1368–1373 (1970)

    Google Scholar 

  13. Howald, H.: Eine Ergospirometrie-Anlage mit on line-Datenverarbeitung durch Mikrocomputer. Acta medicotech.21, 115–120 (1973)

    Google Scholar 

  14. Kiessling, K. H., Piehl, K., Lundquist, C. G.: Effect of physical training on ultrastructural features in human skeletal muscle. In: B. Pernow and B. Saltin (Edit.): Muscle metabolism during exercise. New York-London: Plenum Press 1971

    Google Scholar 

  15. Kraus, H., Kirsten, R., Wolff, J. R.: Die Wirkung von Schwimm-und Lauf-training auf die celluläre Funktion und Struktur des Muskels. Pflügers Arch.308, 57–79 (1969)

    Google Scholar 

  16. Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol.9, 409–414 (1961)

    Google Scholar 

  17. Molé, P. A., Oscai, L. B., Holloszy, J. O.: Adaptation of muscle to exercise. Increase in levels of palmityl-CoA-synthetase, carnitine palmityltransferase, and palmityl-CoA-dehydrogenase, and in the capacity to oxidize fatty acids. J. clin. Invest.50, 2323–2330 (1971)

    Google Scholar 

  18. Morgan, T. E., Short, F. A., Cobb, L. A.: Alterations in human skeletal muscle lipid composition and metabolism induced by physical conditioning. In: J. R. Poortmans (Edit.): Biochemistry of exercise; medicine and sport, Vol. 3. Basel-New York: S. Karger 1969

    Google Scholar 

  19. Morgan, T. E., Cobb, L. A., Short, F. A., Ross, R., Gunn, D. R.: Effects of long-term exercise on human muscle mitochondria. In: B. Pernow and B. Saltin (Edit.): Muscle metabolism during exercise. New York-London: Plenum Press 1971

    Google Scholar 

  20. Oscai, L. B., Molé, P. A., Holloszy, J. O.: Effects of exercise on cardiac weight and mitochondria in male and female rats. Amer. J. Physiol.220, 1944–1948 (1971)

    Google Scholar 

  21. Palade, G. E.: A study of fixation for electron microscopy. J. exp. Med.95, 285 (1952)

    Google Scholar 

  22. Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol.17, 208 (1963)

    Google Scholar 

  23. Schmalbruch, H.: Die quergestreiften Muskelfasern des Menschen. In: Ergebnisse der Anatomie und Entwicklungsgeschichte, B. 43, Heft 1. Berlin-Heidelberg-New York: Springer 1970

    Google Scholar 

  24. Schönholzer, G., Bieler, G., Howald, H.: Ergometrische Methoden zur Messung der aeroben und anaeroben Kapazität. In: III. Int. Seminar für Ergometrie. Berlin 1972 (im Druck)

  25. Weibel, E. R., Kistler, G. S., Scherle, W. F.: Practical stereological methods for morphometric cytology. J. Cell Biol.30, 23–38 (1966)

    Google Scholar 

  26. Weibel, E. R.: A stereological method for estimating volume and surface of sarcoplasmic reticulum. J. Micr.95, 229–242 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grant 3.561.71 from Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoppeler, H., Lüthi, P., Claassen, H. et al. The ultrastructure of the normal human skeletal muscle. Pflugers Arch. 344, 217–232 (1973). https://doi.org/10.1007/BF00588462

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00588462

Key words

Navigation