Pflügers Archiv

, Volume 321, Issue 3, pp 233–241 | Cite as

Studies on the ascending pathways from the thermosensitive region of the spinal cord

  • W. Wünnenberg
  • K. Brück


In young guinea pigs the ascending pathways from the spinal thermosensitive region were studied by means of 1. microelectrode recording and 2. micro-electrocoagulation. In the first series of studies, impulse frequency was recorded from single units of the spinothalamic tract which responded to a temperature rise in the spinal segments C5-T2 with an increase of discharge frequency. At a spinal cord temperature of 38–39° C these units showed a firing rate of 1–5 imp./sec; local heating of the spinal cord (dT/dt=0.1° C/sec) to 40–41° C caused an increase in discharge frequency to 20–25 imp./sec. The mean static impulse frequency was 3 imp./sec at a spinal cord temperature of 39° C, and 10 imp./sec at a spinal cord temperature of 42.5° C.

In the second series of studies bilateral RF-coagulations were carried out in different sites of the diencephalon. These experiments showed that the ascending fibres from the spinal thermosensitive region connect the thermosensitive spinal region with a hypothalamic “temperature control centre”.


Temperature Regulation Control of Shivering Central Thermosensitive Structures Spinal Cord Diencephalon 


Temperaturregulation Steuerung des Kältezitterns zentrale thermosensitive Strukturen Rückenmark Zwischenhirn 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benzinger, Th.: The thermal homeostasis of man. Symp. Soc. exp. Biol.18, 49–80 (1964).Google Scholar
  2. 2.
    Bligh, J.: The thermosensitivity of the hypothalamus and thermoregulation in mammals. Biol. Rev.41, 317–367 (1966).Google Scholar
  3. 3.
    Brück, K., Wünnenberg, B.: Über die Modi der Thermogenese beim neugeborenen Warmblüter. Untersuchungen am Meerschweinchen. Pflügers Arch. ges. Physiol.282, 362–375 (1965).Google Scholar
  4. 4.
    —, Wünnenberg, W.: Beziehung zwischen Thermogenese im “braunen” Fettgewebe, Temperatur im cervicalen Anteil des Vertebralkanals und Kältezittern. Pflügers Arch. ges. Physiol.290, 167–183 (1966).Google Scholar
  5. 5.
    ——: Die Steuerung des Kältezitterns beim Meerschweinchen. Pflügers Arch. ges. Physiol.293, 215–225 (1967).Google Scholar
  6. 6.
    Brück, K., Wünnenberg, W.: Meshed control of two effector systems: non-shivering and shivering thermogenesis. In: Physiological and behavioral temperature regulation. Eds. J. D. Hardy, A. P. Gagge, and J. A. J. Stolwijk. Springfield, Ill.: Ch. C. Thomas (in the press).Google Scholar
  7. 7.
    Hammel, H. T., Jackson, D. C., Stolwijk, J. A. J., Hardy, J. D., Stroemme, S. B.: Temperature regulation by hypothalamic proportional control with an adjustable set point. J. appl. Physiol.18, 1146–1154 (1963).Google Scholar
  8. 8.
    Hardy, J. D., Hellon, R. F., Sutherland, K.: Temperature-sensitive neurons in the dog's hypothalamus. J. Physiol. (Lond.)175, 242–253 (1964).Google Scholar
  9. 9.
    Hemingway, A., Rasmussen, Th., Wikoff, H., Rassmussen, A. T.: Effects of heating hypothalamus of dogs by diathermy. J. Neurophysiol.3, 329–338 (1940).Google Scholar
  10. 10.
    Jessen, C.: Auslösung von Hecheln durch isolierte Wärmung des Rückenmarkes am wachen Hund. Pflügers Arch. ges. Physiol.297, 53–70 (1967).Google Scholar
  11. 11.
    —, Simon, E., Kullmann, R.: Interaction of spinal and hypothalamic thermodetectors in body temperature regulation of the conscious dog. Experientia (Basel)24, 694–695 (1968).Google Scholar
  12. 12.
    Kosaka, M., Simon, E., Thauer, R., Walther, O. E.: Effect of thermal stimulation of spinal cord on respiratory and cortical activity. Amer. J. Physiol.217, 858–864 (1969).Google Scholar
  13. 13.
    ——, Walther, O.-E., Thauer, R.: Response of respiration to selective heating of the spinal cord below partial transsection. Experientia (Basel)25, 36–37 (1969).Google Scholar
  14. 14.
    Nakayama, T., Hammel, H. T., Hardy, J. D., Eisenman, J. S.: Thermal stimulation of electrical activity of single units of the preoptic region. Amer. J. Physiol.204, 1122–1126 (1963).Google Scholar
  15. 15.
    Rautenberg, W., Simon, E.: Die Beeinflussung des Kältezitterns durch lokale Temperaturänderung im Wirbelkanal. Pflügers Arch. ges. Physiol.281, 332 to 345 (1964).Google Scholar
  16. 16.
    Simon, E., Rautenberg, W., Jessen, C.: Initiation of shivering in unanaesthetized dogs by local cooling within the vertebral canal. Experientia (Basel)21, 476–477 (1965).Google Scholar
  17. 17.
    ——, Thauer, R., Iriki, M.: Auslösung thermoregulatorischer Reaktionen durch lokale Kühlung im Vertebralkanal. Naturwissenschaften50, 337 (1963).Google Scholar
  18. 18.
    Smith, R. E., Roberts, J. C.: Thermogenesis of brown adipose tissue in cold-acclimated rats. Amer. J. Physiol.206, 143–148 (1964).Google Scholar
  19. 19.
    Tindal, J. S.: The forebrain of the guinea pig in stereotaxic coordinates. J. comp. Neurol.124, 259–266 (1965).Google Scholar
  20. 20.
    Wünnenberg, W.: Verlauf und Funktion ascendierender Fasern aus einer thermosensitiven Region (C5-T2) des Meerschweinchens. Pflügers Arch.312, R 118 (1969).Google Scholar
  21. 21.
    Wünnenberg, W., Brück, K.: Thermoreceptive structures in the cervical spinal cord of the guinea pig. In: Proc. Int. Union Physiol. Sc. VII, 475 (1968).Google Scholar
  22. 22.
    ——: Zur Funktionsweise thermoreceptiver Strukturen im Cervicalmark des Meerschweinchens. Pflügers Arch. ges. Physiol.299, 1–10 (1968).Google Scholar
  23. 23.
    ——: Single unit activity evoked by thermal stimulation of the cervical spinal cord in the guinea-pig. Nature (Lond.)218, 1268–1268 (1968).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • W. Wünnenberg
    • 1
    • 2
  • K. Brück
    • 1
    • 2
  1. 1.Physiologisches Institut der Universität MarburgMarburgGermany
  2. 2.Universität Gießen, Physiologie IIGießen

Personalised recommendations