Pflügers Archiv

, Volume 321, Issue 3, pp 223–232 | Cite as

Activation by ADP and the correlation between tension and ATPase activity in insect fibrillar muscle

  • R. H. Abbott
  • H. G. Mannherz
Article

Summary

The effect of ADP on the tension and ATPase activity of glycerinated fibres of the flight muscles of the giant water bugLethocerus cordofanus has been investigated. Both increased, by a variable amount, when the ADP concentration was raised to 1 mM, but the increase was reversed when the concentration was raised further. In another series of experiments, the effect of temperature on the ATPase activity and tension was measured. There was a positive correlation between ATPase activity and tension in both types of experiment, the slopes being similar to those reported by other workers when calcium ion concentration or mean muscle length were altered. The positive feedback resulting from the increase of ATPase activity caused by ADP explains at least in part the variability of the results, and provides a possible explanation of the “high tension state” in glycerinated fibrillar muscle.

Key-Words

Muscle Contraction Adenosine Triphosphatase Adenosine Diphosphate Temperature Glycerol Extracted Insect Muscle 

Schlüsselwörter

Muskelkontraktion Adenosinetriphosphatase Adenosine-diphosphat Temperatur Glycerolextrahierter Insektmuskel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, R. H.: D. Phil. Thesis, Oxford University 1969.Google Scholar
  2. —, Chaplain, R. A.: J. Cell Sci.1, 311–330 (1966).Google Scholar
  3. Brocke, H. H. V.: Pflügers Arch. ges. Physiol.290, 70–79 (1966).Google Scholar
  4. Chaplain, R. A.: Arch. Biochem.115, 450–461 (1966).Google Scholar
  5. Chaplain, R. A.: Arch. Biochem.121, 154–168 (1967).Google Scholar
  6. —, Abbott, R. H., White, D. C. S.: Biochem. biophys. Res. Commun.21, 89–93 (1965).Google Scholar
  7. —, Tregear, R. T.: J. molec. Biol.21, 275–280 (1966).Google Scholar
  8. Eisenberg, E., Moos, C.: Arch. Biochem.110, 568–576 (1965).Google Scholar
  9. Jewell, B. R., Rüegg, J. C.: Proc. roy. Soc. B164, 428–459 (1966).Google Scholar
  10. Mannherz, H. G.: Pflügers Arch.303, 230–248 (1968).Google Scholar
  11. Marsh, B. B.: Biochem. biophys. Acta (Amst.)32, 357–361 (1959).Google Scholar
  12. Maruyama, K., Allen, S. R.: Comp. Biochem. Physiol.21, 713–718 (1967).Google Scholar
  13. —, Gregely, J.: J. biol. Chem.237, 1100–1106 (1962).Google Scholar
  14. —, Pringle, J. W. S.: Arch. Biochem.120, 225–226 (1967).Google Scholar
  15. Pringle, J. W. S.: Progr. Biophys. molec. Biol.17, 3–60 (1967).Google Scholar
  16. —, Tregear, R. T.: Proc. roy. Soc. B174, 33–50 (1969).Google Scholar
  17. Rüegg, J. C., Stumpf, H.: Pflügers Arch.305, 34–46 (1969).Google Scholar
  18. —, Tregear, R. T.: Proc. roy. Soc. B165, 497–512 (1966).Google Scholar
  19. Steiger, G. J., Rüegg, J. C.: Pflügers Arch.307, 1–21 (1969).Google Scholar
  20. White, D. C. S.: J. Physiol. (Lond.)208, 583–605 (1970).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • R. H. Abbott
    • 1
  • H. G. Mannherz
    • 1
  1. 1.A.R.C. Unit of Insect Physiology, Department of ZoologyOxford UniversityOxfordEngland

Personalised recommendations