Pflügers Archiv

, Volume 349, Issue 4, pp 319–324 | Cite as

Vastus lateralis cytochrome oxidase activity and its relationship to maximal oxygen consumption in man

  • F. W. Booth
  • K. A. Narahara


Cytochrome oxidase activity was measured in vastus lateralis muscle obtained by needle biopsy in 9 young men. Maximum oxygen uptakes\((\dot V_{O_2 } \max )\) were determined during treadmill running in the same men and were expressed for body weight. The slope of the regression equation for cytochrome oxidase activity and\(\dot V_{O_2 } \max /{\text{kg}}\) body weight was significantly different from zero (P<0.02,r=0.75). It is concluded that a significant correlation exists between vastus lateralis respiratory capacity and maximum O2 consumption in this group of nontrained men.

Key words

Cytochrome Oxidase Maximal Oxygen Uptake 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, T. H.: Measurement of human body fat: a quantitative method suited for use by aviation medical officers. Aerospace Med.34, 907–909 (1963)Google Scholar
  2. 2.
    Andrew, G. M., Guzman, C. A., Becklake, M. R.: Effect of athletic training on exercise cardiac output. J. appl. Physiol.21, 603–608 (1966)Google Scholar
  3. 3.
    Baldwin, K. M., Klinkerfuss, G. H., Terjung, R. L., Molé, P. A., Holloszy, J. O.: Respiratory capacity of white, red, and intermediate muscle: adaptative response to exercise. Amer. J. Physiol.222, 373–378 (1972)Google Scholar
  4. 4.
    Barnard, R. J., Peter, J. B.: Effect of exercise on skeletal muscle III. Cytochrome changes. J. appl. Physiol.31, 904–908 (1971)Google Scholar
  5. 5.
    Barnauskas, E., Björntorp, P., Fahlen, M., Prerovsky, I., Stenberg, J.: Effects of physical training on exercise blood flow and enzymatic activity in skeletal muscle. Cardiovasc. Res.4, 418–422 (1970)Google Scholar
  6. 6.
    Bergström, J.: Muscle electrolytes in man. Scand. J. clin. Lab. Invest., Suppl.68, (1962)Google Scholar
  7. 7.
    Costill, D. L., Gollnick, P. D., Jansson, E. D., Saltin, B., Stein, E. M.: Glycogen depletion pattern in human muscle fibres during distance running. Acta physiol. scand.89, 374–383 (1973)Google Scholar
  8. 8.
    Doll, E., Keul, J.: Metabolism of skeletal muscle II. Oxygen pressure, pH, standard bicarbonate and base excess in the venous blood of working muscles. Pflügers Arch. ges. Physiol.301, 214–229 (1968)Google Scholar
  9. 9.
    Ekblom, B., Åstrand, P. O., Saltin, B., Stenberg, J., Wallström, B.: Effect of training on the circulatory response to exercise. J. appl. Physiol.24, 518–528 (1968)Google Scholar
  10. 10.
    Gollnick, P. D., Armstrong, R. B., Saltin, B., Saubert, C. W., Sembrowich, W. L., Shephard, R. E.: Effect of training on enzyme activity and fiber composition of human skeletal muscle. J. appl. Physiol.34, 107–111 (1973)Google Scholar
  11. 11.
    Gollnick, P. D., Armstrong, R. B., Saubert, C. W., Piehl, K., Saltin, B.: Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. J. appl. Physiol.33, 312–319 (1972)Google Scholar
  12. 12.
    Greenwald, A. J., Allen, T. H., Bancroft, R. W.: Abdominal gas volume at altitude and at ground level. J. appl. Physiol.26, 177–181 (1969)Google Scholar
  13. 13.
    Grimby, G., Häggendal, E., Saltin, B.: Local xenon133 clearance from the quadriceps muscle during exercise in man. J. appl. Physiol.22, 305–310 (1967)Google Scholar
  14. 14.
    Holloszy, J. O.: Biochemical adaptations in muscle. J. biol. Chem.242, 2278–2282 (1967)Google Scholar
  15. 15.
    Hoppeler, H., Lüthi, P., Claussen, H., Weibel, E. R., Howald, H.: The ultrastructure of the normal human skeletal muscle. Pflügers Arch.344, 217–232 (1973)Google Scholar
  16. 16.
    Morgan, T. E., Cobb, L. A., Short, F. A., Ross, R., Gunn, D. R.: Effects of long-term exercise on human muscle mitochondria. In: Muscle metabolism during exercise, pp. 87–95, B. Pernow and B. Saltin, Eds. New York: Plenum 1971Google Scholar
  17. 17.
    Potter, V. R.: The homogenate technique. In: Manometric technique, pp. 163–165, W. W. Umbreit, R. H. Burris, and J. F. Stauffer, Eds. Minneapolis: Burgess 1964Google Scholar
  18. 18.
    Rifenberick, D. H., Gamble, J. G., Max, S. R.: Response of mitochondrial enzymes to decreased muscular activity. Amer. J. Physiol.225, 1295–1299 (1973)Google Scholar
  19. 19.
    Rifenberick, D. H., Max, S. R.: Substrate utilization by disused rat skeletal muscles. Amer. J. Physiol.226, 295–297 (1974)Google Scholar
  20. 20.
    Saltin, B., Blomqvist, G., Mitchell, J. H., Johnson, R. L., Wildenthal, K., Chapman, C. B.: Response to exercise after bed rest and after training. Circulation38, Suppl. 7 (1968)Google Scholar
  21. 21.
    Taylor, H. L., Buskirk, E., Henschel, A.: Maximal oxygen intake as an objective measure of cardio-respiratory performance. J. appl. Physiol.8, 73–80 (1955)Google Scholar
  22. 22.
    Wharton, D. C., Griffiths, D. D.: Studies on the electron transport system. XXXIX. Assay of cytochrome oxidase. Effects of phospholipids and other factors. Arch. Biochem. Biophys.96, 103–114 (1962)Google Scholar
  23. 23.
    White, A., Handler, P., Smith, E. L.: Principles of biochemistry, pp. 323–333. New York: McGraw-Hill 1963Google Scholar
  24. 24.
    Wilmore, J. H.: A simplified method for determination of residual lung volumes. J. appl. Physiol.27, 96–100 (1969)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • F. W. Booth
    • 1
    • 2
  • K. A. Narahara
    • 1
  1. 1.Environmental Physiology and Biochemical Assessments BranchesSchool of Aerospace MedicineBrooks AFBUSA
  2. 2.Department of Preventive Medicine and Public HealthWashington University School of MedicineSt. LouisUSA

Personalised recommendations