Pflügers Archiv

, Volume 320, Issue 4, pp 359–372 | Cite as

The cochlear potentials

II. The nature of the cochlear endolymphatic resting potential
  • W. Kuijpers
  • S. L. Bonting


The effect, on the endocochlear resting potential (ERP) of anoxemia, cyanide, pH changes and changes of the electrolyte composition of the perilymph was studied.

The ERP appears to be composed of two components: a negative potentialE-mainly determined by the K+ gradient between endolymph and perilymph or plasma and a positive potentialE+ due to an ouabain- and anoxia-sensitive electrogenic K+ pump represented by the Na+-K+-ATPase system of the stria vascularis.

Maintenance of the ionic concentrations of the endolymph appears to require in addition active transport of Na+ and Cl out of the endolymph.


Endocochlear Resting Potential Stria. Vascularis Electrogenic K+-Pump K+-Diffusion Potential Guinea Pig 


Endocochleares Potential Stria vascularis Elektrogene K+-Pumpe K+-Diffusionspotential Meerschweinchen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonting, S. L., Becker, B.: Studies on sodium-potassium activated adenosine-triphosphatase XIV. Inhibition of enzyme activity and aqueous humor flow in the rabbit eye after intravitreal injection of ouabain. Invest. Ophthal.3, 523 (1964).Google Scholar
  2. 2.
    —, Canady, M. R.: Studies on Na−K activated ATPase XII. Na−K-activated ATPase and sodium transport in toad bladder. Amer. J. Physiol.207, 1005 (1964).Google Scholar
  3. 3.
    —, Caravaggio, L. L., Canady, M. R., Hawkins, N. M.: Studies on sodium-potassium activated adenosinetriphosphatase XI. The salt gland of the herring gull. Arch. Biochem.106, 49 (1964).Google Scholar
  4. 4.
    Bosher, S. K., Warren, R. L.: Observations on the electrochemistry of the cochlear endolymph of the rat: a quantitative study of its electrical potential and ionic composition as determined by means of flame spectrophotometry. Proc. roy. Soc. B.171, 227 (1968).Google Scholar
  5. 5.
    Butler, R. A.: Some experimental observations on the resting potentials in the guinea pig cochlea. J. acoust. Soc. Amer.37, 429 (1965).Google Scholar
  6. 6.
    Cole, D. F.: Electrochemical changes associated with the formation of aqueous humor. Brit. J. Ophthal.45, 202 (1961).Google Scholar
  7. 7.
    Duvall, A. J.: Ultrastructure of the lateral cochlear wall following intermixing of fluids. Ann. Otol. (St. Louis)77, 317 (1968).Google Scholar
  8. 8.
    Eggemann, S., Bruchmüller, W.: Die Kohlensäureanhydratase im Innenohr des Meerschweinchens und ihre Hemmung. Arch. klin. exp. Ohr.,- Nas.- u. Kehlk.-Heilk.190, 450 (1968).Google Scholar
  9. 9.
    Erulkar, S. D., Maren, T. H.: Carbonic anhydrase and the inner ear. Nature (Lond.)189, 459 (1961).Google Scholar
  10. 10.
    Haskell J. A., Clemons, R. D., Harvey, W. R.: Active transport by the cecropia midgut. I. Inhibitors, stimulants and potassium transport. J. cell. comp. Physiol.65, 45 (1965).Google Scholar
  11. 11.
    Herrera, F. C.: Bioelectric properties and ionic content in toad bladder. J. gen. Physiol.51, 261 (1968).Google Scholar
  12. 12.
    Hodgkin, A. L., Katz, B.: The effect of ions on the electrical activity of the giant axon of the squid. J. Physiol. (Lond.)108, 37 (1949).Google Scholar
  13. 13.
    Honrubia, V., Johnstone, B. M., Butler, R. A.: Maintenance of cochlear potentials during asphyxia. Acta oto-larnyg. (Stockh.)60, 105 (1965).Google Scholar
  14. 14.
    Johnson, R. L., Spoendlin, H. H.: Structural evidence of secretion in the stria vascularis. Ann. Otol., (St. Louis)75, 127 (1966).Google Scholar
  15. 15.
    Johnstone, B. M.: The relation between endolymph and the endocochlear potential during anoxia. Acta oto-laryng. (Stockh.)60, 113 (1965).Google Scholar
  16. 16.
    —: Genesis of the cochlear endolymphatic potential. Curr. Topics in Bioenerg.2, 335 (1967).Google Scholar
  17. 17.
    Koefoed-Johnsen, V.: Effect, of g-strophantin (ouabain) on the active transport of sodium through isolated frog skin. Acta physiol. scand.42, Suppl.145, 87 (1957).Google Scholar
  18. 18.
    Konishi, T., Butler, R. A., Fernández, C.: Effect of anoxia on cochlear potentials. J. acoust. Soc. Amer.33, 349 (1961).Google Scholar
  19. 19.
    —, Kelsey, E.,: Effect of sodium deficiency on cochlear potentials. J. acoust. Soc. Amer.43, 462 (1968).Google Scholar
  20. 20.
    ——: Effect of tetrodotoxin and procain on cochlear potentials. J. acoust. Soc. Amer.43, 471 (1968).Google Scholar
  21. 21.
    ——, Singleton, G. T.: Effects of chemical alteration in the endolymph on the cochlear potentials. Acta oto-laryng. (Stockh.)62, 393 (1966).Google Scholar
  22. 22.
    Kuijpers, W.: Cation transport and cochlear function Thesis, Nijmegen 1969.Google Scholar
  23. 23.
    — Bonting, S. L..: Localization and properties of ATPase in the inner ear of the guinea pig. Biochim. biophys. Acta (Amst.)173, 477 (1969).Google Scholar
  24. 24.
    ——: The cochlear potentials. I. The effect of ouabain on the cochlear potentials of the guinea pig. Pflügers Arch.320, 348 (1970).Google Scholar
  25. 25.
    Loewenstein, W. R., Terzuolo, A. A., Washizu, Y.: Separation of transducer and impulse-generating processes in sensory receptors. Science142, 1180 (1963).Google Scholar
  26. 26.
    Marmor, M. F., Gorman, A. L. F.: Membrane potential as the sum of ionic and metabolic components. Science167, 65 (1970).Google Scholar
  27. 27.
    Misrahy, G. A., Hildreth K. M., Clark, L. C., Shinabarger, E. W.: Measurement of the pH of the endolymph in the cochlea of guinea pigs. Amer. J. Physiol.194, 393 (1958).Google Scholar
  28. 28.
    Morizono, T., Johnstone, B. M., Kaldor., J.: Cochlear blood volume in the guinea pig measured with Cr51 labelled red blood cells. Otol. Fukuoka.14, 82 (1968).Google Scholar
  29. 29.
    Ozaki, M., Sato, M.: Changes in the membrane potential and the membrane conductance associated with a sustained depolarization of the non-myelinated nerve terminal in Pacinian corpuscles. J. Physiol. (Lond.)180, 186 (1965).Google Scholar
  30. 30.
    Patlak, C. S.: Potential difference of the ventricular fluid in vivo and in vitro in dogfish. Fed. Proc.23, 211 (1964).Google Scholar
  31. 31.
    Rauch, S.: Biochemie des Hörorgans. Stuttgart: G. Thieme 1964.Google Scholar
  32. 32.
    Rice, E. A., Shinabarger, E. W.: Studies on the endolymphatic DC potential of the guinea pig's cochlea. J. acoust. Soc. Amer.33, 922 (1961).Google Scholar
  33. 33.
    Schoffeniels, E.: Cellular aspects of membrane permeability. Oxford: Pergamon 1967.Google Scholar
  34. 34.
    Slegers, J. F. G., Moons, W. M.: Effect, of acetazolamide on the chloride shift and the sodium pump in secretory cells. Nature (Lond.)220, 181 (1968).Google Scholar
  35. 35.
    Tasaki, I., Davis, H., Eldredge, D. H.: Exploration of cochlear potentials in guinea pig with a microelectrode. J. acoust. Soc. Amer.26, 765 (1954).Google Scholar
  36. 36.
    Thesleff, S., Schmidt-Nielsen, K.: An electrophysiological study of the salt gland of the herring gull. Amer. J. Physiol.202, 597 (1962).Google Scholar
  37. 37.
    Ussing, H. H., Biber, T. V., Bricker, N. S.: Exposure of the isolated frog skin to high potassium concentration at the internal surface. II. Changes in epithelial cell volume, resistance and response to antidiuretic hormone. J. gen. Physiol.48, 425 (1965).Google Scholar
  38. 38.
    Vates, T., Bonting, S. L., Oppelt, W. W.: Na−K-activated adenosine triphosphatase and formation of cerebrospinal fluid in the cat. Amer. J. Physiol.206, 1165 (1964).Google Scholar
  39. 39.
    Wood, J. L., Farrand, P. S., Harvey, W. R.: Active transport of potassium by the cecropia, midgut. VI. Microelectrode potential profile. J. exp. Biol.50, 169 (1969).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • W. Kuijpers
    • 1
    • 2
  • S. L. Bonting
    • 1
    • 2
  1. 1.Department of OtolaryngologyUniversity of NijmegenNijmegenThe Netherlands
  2. 2.Department of BiochemistryUniversity of NijmegenNijmegen

Personalised recommendations