Pflügers Archiv

, Volume 316, Issue 1, pp 34–50 | Cite as

Respiratory response to arterial H+ at different levels of arterial\(P_{{\text{CO}}_{\text{2}} } \) during hyperoxia or hypoxia

  • T. Natsui
Article

Summary

Experiments were carried out in 12 dogs anesthetized with halothane of constant alveolar concentration (mean: 0.89%). The ventilatory response to arterial\(P_{{\text{CO}}_{\text{2}} } \) with hyperoxia was determined in metabolic acidosis (by infusion of 0.5 N HCl solution). The ventilatory response to arterial\(P_{{\text{CO}}_{\text{2}} } \) with constant hypoxia (about 50 mm Hg arterial\(P_{{\text{O}}_{\text{2}} } \)) was determined in both metabolic acidosis and alkalosis (by infusion of 1 M NaHCO3 solution).

The arterial H+-ventilation response curve was obtained at different constant levels of\(P_{{\text{CO}}_{\text{2}} } \) by simultaneous analysis of the\(P_{{\text{CO}}_{\text{2}} } \)-H+ diagram and the\(P_{{\text{CO}}_{\text{2}} } \)-ventilation response curve. Ventilation in hyperoxia was largely dependent on\(P_{{\text{CO}}_{\text{2}} } \) if acid-base balance was near normal, but became independent of\(P_{{\text{CO}}_{\text{2}} } \) and dependent on arterial H+ as this increased. It was postulated that this was partly due to the negative interaction between\(P_{{\text{CO}}_{\text{2}} } \) and H+. The H+-ventilation response curves showed the same pattern in hypoxia, but only on the alkalotic side. However, with hypoxia in the range of normal to acidotic condition, control of ventilation was mainly dependent on H+ and independent of\(P_{{\text{CO}}_{\text{2}} } \); this implies an interaction between hypoxia and H+ at the peripheral chemoreceptors.

Key-Words

Ventilatory Response to H+ Ventilatory Response to CO2 Acid-base Displacement Hypoxic Potentiation with H+ Halothane Anesthesia 

Schlüsselwörter

Ventilationsantwort auf H+ Ventilationsantwort auf CO2 Säure-Basen-Verschiebung Hypoxische Potenzierung mit H+ Halothannarkose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beneken Kolmer, H. H., Kreuzer, F.: Continuous polarographic recording of oxygen pressure in respiratory air. Respir. Physiol.4, 109–117 (1968).Google Scholar
  2. Bjurstedt, A. G. H.: Interaction of centrogenic and chemoreflex control of breathing during oxygen deficiency at rest. Acta physiol. scand.12, 1–88 (1946).Google Scholar
  3. Bradley, R. D., Semple, S. J. G.: A comparison of certain acid-base characteristics of arterial blood, jugular venous blood and cerebrospinal fluid in man, and the effect on them of some acute and chronic acid-base disturbances. J. Physiol. (Lond.)160, 381–391 (1962).Google Scholar
  4. Brandstater, B., Eger II, E. I., Edelist, G.: Constant-depth halothane anesthesia in respiratory studies. J. appl. Physiol.20, 171–174 (1965).Google Scholar
  5. Burnap, T. K., Galla, S. J., Vandam, L. D.: Anesthetic, circulatory and respiratory effects of fluothane. Anesthesiology19, 307–320 (1958).Google Scholar
  6. Chazan, J. A., Appleton, F. M., London, A. M., Schwartz, W. B.: Effects of chronic metabolic acid-base disturbances on the composition of cerebrospinal fluid in the dog. Clin. Sci.36 345–358 (1969).Google Scholar
  7. Cormack, R. S., Cunningham, D. J. C., Gee, J. B. L.: The effect of carbon dioxide on the respiratory response to want of oxygen in man. Quart. J. exp. Physiol.42, 303–319 (1957).Google Scholar
  8. Domizi, D. B., Perkins, J. F., Jr., Byrne, J. S.: Vnetilatory response to fixed acid evaluated by ‘iso-\(P_{{\text{CO}}_{\text{2}} } \)‘ technique. J. appl. Physiol.14, 557–561 (1959).Google Scholar
  9. Eyzaguirre, C., Lewin, J.: Chemoreceptor activity of the carotid body of the cat. J. Physiol. (Lond.)159, 222–237 (1961).Google Scholar
  10. Gemmill, C. L., Reeves, D. L.: The effect of anoxemia in normal dogs before and after denervation of the carotid sinuses. Amer. J. Physiol.105, 487–495 (1933).Google Scholar
  11. Gesell, R., Lapides, J., Levin, M.: The interaction of central and peripheral chemical control of breathing. Amer. J. Physiol.130, 155–170 (1940).Google Scholar
  12. Gray, B. A.: Response of the perfused carotid body to changes in pH and\(P_{{\text{CO}}_{\text{2}} } \). Respir. Physiol.4, 229–245 (1968).Google Scholar
  13. Gray, J. S.: Pulmonary ventilation and its physiological regulation, pp. 1–82. Springfield: Ch. C. Thomas 1950.Google Scholar
  14. Hamilton, R. W., Jr., Brown, E. B., Jr.: Carbon dioxide, oxygen, and acidity: The interaction and independent effects on breathing of these factors in the arterial blood. In: Report of USAF School of Aerospace Medicine, Aerospace Medical Division (AFSC), Brooks Air Force Base, pp. 1–42. Texas 1964.Google Scholar
  15. Honda, Y., Natsui, T.: Effect of sleep on ventilatory response to CO2 in severe hypoxia. Respir. Physiol.3, 220–228 (1967).Google Scholar
  16. ——, Hasumura, N.: Analysis of ventilatory response to CO2 during hypoxia in dogs. J. appl. Physiol.20, 839–843 (1965).Google Scholar
  17. Hornbein, T. F., Griffo, Z. J., Roos, A.: Quantitation of chemoreceptor activity: Interrelation of hypoxia and hypercapnia. J. Neurophysiol.24, 561–568 (1961).Google Scholar
  18. —, Roos, A.: Specificity of H ion concentration as a carotid chemoreceptor stimulus. J. appl. Physiol.18, 580–584 (1963).Google Scholar
  19. Jacobs, M. H.: The production of intracellular acidity by neutral and alkaline solutions containing carbon dioxide. Amer. J. Physiol.53, 457–463 (1920).Google Scholar
  20. Joels, N., Neil, E.: The influence of anoxia and hypercapnia, separately and in combination, on chemoreceptor impulse discharge. J. Physiol. (Lond.)155, 45–46 (1961).Google Scholar
  21. Katsaros, B., Loeschcke, H. H., Lerche, D., Schönthal, H., Hahn, N.: Wirkung der Bicabonat-Alkalose auf die Lungenbelüftung beim Menschen. Bestimmung der Teilwirkung von pH und CO2-Druck auf die Ventilation und Vergleich mit den Ergebnissen bei Acidose. Pflügers Arch. ges. Physiol.271, 732–747 (1960).Google Scholar
  22. Kreuzer, F., Rogeness, G. A., Bornstein, P.: Continuous recording in vivo of respiratory air oxygen tension. J. appl. Physiol.15, 1157–1158 (1960).Google Scholar
  23. Lambertsen, C. J., Smyth, M. G., Semple, S. J. G., Gelfand, R.: Respiratory effects in normal men of blood pH changes at “constant” arterial and internal jugular venous\(P_{{\text{CO}}_{\text{2}} } \). Fed. Proc.17, 92 (1958).Google Scholar
  24. Lerche, D., Katsaros, B., Lerche, G., Loeschcke, H. H.: Vergleich der Wirkung verschiedener Acidosen (NH4Cl, CaCl2, Acetazolamid) auf die Lungenbelüftung beim Menschen. Pflügers Arch. ges. Physiol.270, 450–460 (1960).Google Scholar
  25. Loeschcke, H. H.: On specificity of CO2 as a respiratory stimulus. Bull. Physio-path. resp.5, 13–25 (1969).Google Scholar
  26. —, Gertz, K. H.: Einfluß des O2-Druckes in der Einatmungsluft auf die Atemtätigkeit des Menschen, geprüft unter Konstanthaltung des alveolaren CO2-Druckes. Pflügers Arch. ges. Physiol.267, 460–477 (1958).Google Scholar
  27. —, Katsaros, B., Lerche, D.: Differenzierung der Wirkung von CO2-Druck und Wasserstoffionenkonzentration im Blut auf die Atmung beim Menschen. Pflügers Arch. ges. Physiol.270, 461–466 (1960).Google Scholar
  28. —, Koepchen, H. P., Gertz K. H.: Über den Einfluß von Wasserstoffionenkonzentration und CO2-Druck im liquor cerebrospinalis auf die Atmung. Pflügers Arch. ges. Physiol.266, 569–585 (1958).Google Scholar
  29. —, Mitchell, R. A.: Properties and localisation of intracranial chemosensitivity. In: The Regulation of Human Respiration, pp. 243–256. Ed. by. D. J. C. Cunningham and B. B. Lloyd. Oxford: Blackwell Scient. 1963.Google Scholar
  30. ——, Katsaros, B., Perkins, J. F., Jr., Konig, A. Interaction of intracranial chemosensitivity with peripheral afferents to the respiratory centers. Ann. N.Y. Acad. Sci.109, 651–659 (1963).Google Scholar
  31. Metz, B., Bernthal, T.: Interaction of respiratory drives. Fed. Proc.12, 99 (1953).Google Scholar
  32. Mitchell, R. A.: Cerebrospinal fluid and the regulation of respiration. In: Advances in Respiratory Physiology, pp. 1–47. Ed. by. C. G. Caro. London: E. Arnold 1966.Google Scholar
  33. Natsui, T.: Respiratory response to hypoxia with hypocapnia or normocapnia and to CO2 in hypothermic dogs. Respir. Physiol.7, 188–202 (1969).Google Scholar
  34. Nielsen, M., Smith, H.: Studies on the regulation of respiration in acute hypoxia. Acta physiol. scand.24, 293–313 (1952).Google Scholar
  35. Otey, E. S., Bernthal, T.: Interaction of hypoxia and hypercapnia at the carotid bodies in chemoreflex stimulation of breathing. Fed. Proc.19, 373 (1960).Google Scholar
  36. Perkins, J. F., Jr.: The contribution of the peripheral respiratory chemoreceptors to pulmonary ventilation—A historical and experimental approach. In: Arterial Chemoreceptors, pp. 335–352. Ed. by R. W. Torrance. Oxford: Blackwell, Scient. 1968.Google Scholar
  37. Robin, E. D., Whaley, R. D., Crump, C. H., Bickelmann, A. G., Travis, D. M.: Acid-base relations between spinal fluid and arterial blood with special reference to control of ventilation. J. appl. Physiol.13, 385–392 (1958).Google Scholar
  38. Saito, K., Honda, Y., Hasumura, H.: Evaluation of respiratory response to changes in\(P_{{\text{CO}}_{\text{2}} } \) and hydrogen ion concentration of arterial blood in rabbits and dogs. Jap. J. Physiol.10, 634–645 (1960).Google Scholar
  39. Schuler, H., Kreuzer, F.: Rapid polarographic in vivo oxygen catheter electrodes. Respir. Physiol.3, 90–110 (1967).Google Scholar
  40. Severinghaus, J. W., Larson, C. P., Jr.: Respiration in anesthesia. In: Handbook of Physiology, vol. 2 (Respiration section), pp. 1219–1264. Ed. by W. O. Fenn and H. Rahn. Baltimore: The Williams & Wilkins Co. 1965.Google Scholar
  41. Wiemer, W., Ott, N., Winterstein, H.: Reflektorische und zentrale Anteile der O2-Mangel- und CO2-Hyperpnoe des Kaninchens. Z. Biol.114, 230–264 (1963).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • T. Natsui
    • 1
  1. 1.Department of Physiology, Faculty of MedicineUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations