Skip to main content
Log in

Solute diffusion through degradable semicrystalline polyethylene glycol/poly(l-lactide) copolymers

  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Summary

The diffusion of C.I. direct orange 34(MW=299) and benzoic acid(MW=122) through degraded semicrystalline polyethylene glycol(PEG)/poly(L-lactide)(PLLA) block copolymers with various PEG contents and PEG segment lengths at 37°C was studied by UV-visible spectroscopy, differential scanning calorimetry(DSC), wide angle X-ray diffractometer (WAXS) and scanning electron microscopy(SEM). The influences of the PEG contents, PEG segment lengths and hydrolytic degradation of PEG/PLLA copolymers on the solute diffusion coefficient and mode for transport were investigated. It is concluded that the diffusion rate increases with the increase of PEG contents and PEG segment lengths in PEG/PLLA copolymers. This is understandable that the increase of PEG content and PEG segment length both make the degree of crystallinity decrease. The steady state of mass flux could not be reached at the diffusion times up to 1000 h, because the copolymers underwent hydrolysis reaction during this period. Furthermore, it is understood that the characteristic time of diffusion as defined by the square of film thickness at an instant of time over the diffusion coefficient of solute through polymer decreases with the increasing diffusion time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.E. Schmitt and R.A. Polistina, U.S. Pat. 3297033 (1967).

  2. D.K. Gilding and A.M. Reed,Polymer, 20, 1459 (1979).

    Article  Google Scholar 

  3. T. Ueda, Y. Takebayaski, Y. Tabata and Y. Ikada,Polymer Preprints (Japan),39, 582 (1990).

    Google Scholar 

  4. B. Eling, S. Gogolewski and A.J. Pennings,Polymer, 23, 1587 (1982).

    Article  Google Scholar 

  5. B. Kalb and A.J. Pennings,Polymer, 21, 607 (1980).

    Article  Google Scholar 

  6. A.R. Miller, J.M. Brady and D.E. Cutright,J. Biomed. Mater. Res. 11, 711 (1977).

    PubMed  Google Scholar 

  7. A.M. Reed and D.K. Gilding,Polymer, 22, 499 (1981).

    Google Scholar 

  8. Y. Kimura, Y. Matsuzaki, H. Yamane and T. Kitao,Polymer, 30, 1342 (1989).

    Google Scholar 

  9. D. Cohn and H. Younes,J. Biomed. Mater. Res., 21, 993 (1986).

    Google Scholar 

  10. S.J. Holland, B.J. Tighe and P.L. Gould,J. Controlled Release, 4, 155 (1986).

    Google Scholar 

  11. R.S. Harland and N.A. Peppas,Colloid & Polymer Science, 267, 218 (1989).

    Google Scholar 

  12. K.J. Zhu, B. H. Song and S.L. Yang,J. Polym. Sci.: Part A:Polym. Chem., 27, 2151 (1989).

    Google Scholar 

  13. K.J. Zhu, X. Z. Lin and S.L. Yang,J. Appl. Polym. Sci., 39, 1 (1990).

    Article  Google Scholar 

  14. J Crank (ed.), “The Mathematics of Diffusion”, Oxford University Press 1975, chap.4, pp.52.

  15. S. RabiejEur. Polym. J., 27, 947, (1991).

    Google Scholar 

  16. D.S.-G. Hu and H. J. Liu,Polymer Bulletin, 30(6), 669(1993).

    Google Scholar 

  17. M. Vert, S. Li and H. Garreau,J. Controlled Release, 16, 15 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, HJ., Hsieh, CT. & Hu, D.SG. Solute diffusion through degradable semicrystalline polyethylene glycol/poly(l-lactide) copolymers. Polymer Bulletin 32, 463–470 (1994). https://doi.org/10.1007/BF00587889

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00587889

Keywords

Navigation