Advertisement

Pflügers Archiv

, Volume 337, Issue 2, pp 107–117 | Cite as

Relaxation of coronary arteries by electro-mechanical decoupling or adrenergic stimulation

  • Ulrich Peiper
  • Erich Schmidt
Article

Summary

The contractions of isolated spiral strips from bovine and porcine coronary arteries were induced by potassium depolarization. The preparations were relaxed by verapamil and/or isoproterenol.
  1. 1.

    The non-activated preparation of bovine artery has a basal tone corresponding to 15±1.7% of the maximum of developed tension.

     
  2. 2.

    The contraction induced by potassium depolarization was largely prevented by 11.3 μg/ml of verapamil. In this preparation, however, 2.8 μg/ml of noradrenaline relaxed the depolarized spiral strip to the same degree as compared with values of the polarized arteries.

     
  3. 3.

    The depolarized, activated preparation is more relaxed by inhibition of calcium ion influx (verapamil) than by activation of beta-adrenergic receptors (isoproterenol). The relaxing effect takes place in the following order: noradrenaline (51.7%) < isoproterenol (86.1%) < verapamil (100%).

     
  4. 4.

    The polarized, non-activated preparation is more relaxed by stimulation of beta-adrenergic receptors (isoproterenol) than by inhibition of calcium ion influx (verapamil). The relaxing effect takes place in the following order: verapamil (64.4%) < noradrenaline (85.3%) < isoproterenol (100%).

     
  5. 5.

    The degree of maximal relaxation after verapamil, noradrenaline, or isoproterenol increases in the polarized preparation with augmented fibre stretch.

     

Key words

Coronary Artery Depolarization Noradrenaline Verapamil Isoproterenol Adrenergic Beta-Receptors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berne, R. M.: Effect of epinephrine and norepinephrine on coronary circulation. Circulat. Res.6, 644–655 (1958).Google Scholar
  2. 2.
    Bohr, D. F.: Adrenergic receptors in coronary arteries. Ann. N. Y. Acad. Sci.139, 799–807 (1967).Google Scholar
  3. 3.
    Breemen, C. van, Lesser, P.: The absence of increased membrane calcium permeability during norepinephrine stimulation of arterial smooth muscle. Microvasc. Res.3, 113–114 (1971).Google Scholar
  4. 4.
    Bülbring, E.: Correlation between membrane potential, spike discharge and tension in smooth muscle. J. Physiol. (Lond.)128, 200–221 (1955).Google Scholar
  5. 5.
    Deck, K. A.: Änderungen des Ruhepotentials und der Kabeleigenschaften der Purkinje-Fäden bei der Dehnung. Pflügers Arch. ges. Physiol.280, 131–140 (1964).Google Scholar
  6. 6.
    Denison, A. B., Bardhanabaedya, S., Green, H. D.: Adrenergic drugs and blockade on coronary arterioles and myocardial contraction. Circulat. Res.4, 653–658 (1956).Google Scholar
  7. 7.
    Doutheil, U., Ensslin, A.: Wirkung von Brenzcatechinaminen auf die Coronardurchblutung an asystolischen Hundeherzen. Pflügers Arch. ges. Physiol.287, 111–123 (1966).Google Scholar
  8. 8.
    Doutheil, U., Ten Bruggencate, H. G., Kramer, K.: Coronarvasomotorik unter l-Noradrenalin und Isopropylnoradrenalin nach Blockierung der adrenergischen β-Receptoren durch Nethalide. Pflügers Arch. ges. Physiol.281, 181–190 (1964).Google Scholar
  9. 9.
    Feinberg, H., Katz, L. N.: Effect of catecholamines, l-epinephrine and l-norepinephrine on coronary flow and oxygen metabolism of the myocardium. Amer. J. Physiol.193, 151–156 (1958).Google Scholar
  10. 10.
    Fleckenstein, A., Döring, H. J., Kammermeier, H.: Einfluß von beta-Rezeptorenblockern und verwandten Substanzen auf Erregung, Kontraktion und Energiestoffwechsel der Myokardfaser. Klin. Wschr.46, 343–351 (1968).Google Scholar
  11. 11.
    Fleckenstein, A., Grün, G., Tritthart, H., Byon, K., Harding, P.: Uterus-Relaxation durch hoch aktive Ca++-antagonistische Hemmstoffe der elektromechanischen Koppelung wie Isoptin (Verapamil, Iproveratril), Substanz D 600 und Segontin (Prenylamin). Klin. Wschr.49, 32–41 (1971).Google Scholar
  12. 12.
    Fleckenstein, A., Kammermeier, H., Döring, H. J., Freund, H. J., Grün, G., Kienle, A.: Zum Wirkungsmechanismus neuartiger Koronardilatatoren mit gleichzeitig Sauerstoff-einsparenden Myokardeffekten, Prenylamin und Iproveratril. 1. Teil und 2. Teil, Z. Kreisl.-Forsch.56, 716–744, 839–858 (1967).Google Scholar
  13. 13.
    Folkow, B., Häggendahl, J., Lisander, B.: Extent of release and elimination of noradrenaline at peripheral adrenergic nerve terminals. Acta physiol. scand.72, Suppl. 307 (1967).Google Scholar
  14. 14.
    Glomstein, A., Hauge, A., Øye, I., Sinclair, D.: Effects of adrenaline on coronary flow in isolated perfused rat hearts. Acta physiol. scand.69, 102–110 (1967).Google Scholar
  15. 15.
    Grün, G., Fleckenstein, A.: Die elektromechanische Entkopplung der glatten Gefäßmuskulatur als Grundprinzip der Coronardilatation durch 4-(2′-Nitrophenyl)-2,6-dimethyl-1,4-dihydropyridin-3,5-dicarbonsäure-dimethylester (BAY a 1040, Nifepidine). Arzneimittel-Forsch. (Drug Res.)22, 334–344 (1972).Google Scholar
  16. 16.
    Haeusler, G.: The effect of verapamil on the contractility of smooth muscle and on excitation-secretion coupling in adrenergic nerve terminals. Angiolog.8, 156–160 (1971).Google Scholar
  17. 17.
    Henrich, H., Lutz, J.: Das vasculäre Escape-Phänomen am Intestinalkreislauf und seine Auslösung durch unterschiedliche vasoconstrictorische Substanzen. Pflügers Arch.329, 82–94 (1971).Google Scholar
  18. 18.
    Hirche, Hj.: Die Wirkung von Isoproterenol, Adrenalin, Noradrenalin und Adenosin auf die Durchblutung und den O2-Verbrauch des Herzmuskels vor und nach Blockierung der ß-Receptoren. Pflügers Arch. ges. Physiol.288, 162–185 (1966).Google Scholar
  19. 19.
    Holtz, P., Palm, D.: Brenzcatechinamine und andere sympathicomimetische Amine. Biosynthese und Inaktivierung. Freisetzung und Wirkung. Ergebn. Physiol.58, 1–580 (1966).Google Scholar
  20. 20.
    Katz, A. M.: Contractile proteins of the heart. Physiol. Rev.50, 63–158 (1970).Google Scholar
  21. 21.
    Lewis, F. B., Coffman, J. D., Gregg, D. E.: Effect of heart rate and intracoronary isoproterenol, levarterenol, and epinephrine on coronary flow and resistance. Circulat. Res.9, 89–95 (1961).Google Scholar
  22. 22.
    Ljung, B.: Use of partial alpha-receptor blockade for estimation of transmitter concentration at vasoconstrictor nerve endings. Acta physiol. scand.73, 6A (1968).Google Scholar
  23. 23.
    Lochner, W., Herz. In: Physiologie des Kreislaufes, Bd. 1, Edit. E. Bauereisen. Berlin-Heidelberg-New York: Springer 1971.Google Scholar
  24. 24.
    Luebs, E. D., Cohen, A., Zaleski, E., Bing, R. J.: The effect of nitroglycerin, intensin, isoptin, and papaverin on coronary blood flow in man, as measured by the coincidence counting technique and rubidium84. Amer. J. Cardiol.17, 535 (1966).Google Scholar
  25. 25.
    McRaven, D. R., Mark, A. L., Abbound, F. M., Mayer, H. E.: Responses of coronary vessels to adrenergic stimuli. J. clin. Invest.50, 773–778 (1971).Google Scholar
  26. 26.
    Mekata, H., Niu, H.: Electrical and mechanical responses of coronary artery smooth muscle to catecholamines. Jap. J. Physiol.19, 599–608 (1969).Google Scholar
  27. 27.
    Melville, K. I., Benfey, B. G.: Coronary vasodilator and cardiac adrenergic blocking effects of iproveratril. Canad. J. Physiol. Pharmacol.43, 339–342 (1965).Google Scholar
  28. 28.
    Mignault, J. de L.: Coronary cineangiographic study of intravenously administered isoptin. Canad. med. Ass. J.95, 1252–1253 (1966).Google Scholar
  29. 29.
    Murphy, R. A., Bohr, D. F., Newman, D. L.: Arterial actomyosin: Mg, Ca, and ATPion dependencies for ATPase activity. Amer. J. Physiol.217, 666–673 (1969).Google Scholar
  30. 30.
    Orlov, R. S., Plekhanov, I. P.: Changes of membranic potentials of smooth muscles of vessels in response to tension. Dokl. Akad. Nauk. SSR.175, 254–255 (1967).Google Scholar
  31. 31.
    Peiper, U., Griebel, L., Wende, W.: Activation of vascular smooth muscle of rat aorta by noradrenaline and depolarization: two different mechanisms. Pflügers Arch.330, 74–89 (1971).Google Scholar
  32. 32.
    Proctor, E.: The effects of physiological concentrations of noradrenaline on the coronary resistance of isolated perfused hearts of the cat, dog, and monkey. J. Pharm. Pharmacol.20, 36–40 (1968).Google Scholar
  33. 33.
    Rudolph, W., Kriener, J., Meister, W.: Die Wirkung von Verapamil auf Coronardurchblutung, Sauerstoffutilisation und Kohlendioxydproduktion des menschlichen Herzens. Klin. Wschr.49, 982–988 (1971).Google Scholar
  34. 34.
    Schmidt, E., Peiper, U.: Einfluß der Vordehnung auf die Dynamik der glatten Gefäßmuskulatur. Pflügers Arch.333, 314–325 (1972).Google Scholar
  35. 35.
    Schmidt, E., Peiper, U.: Tonusänderungen von isolierten Coronararterien durch Depolarisation und/oder Noradrenalin vor und nach Blockierung adrenerger Receptoren. Naunyn-Schmiedeberg's Arch. Pharmacol. (in press).Google Scholar
  36. 36.
    Sparrow, M. P., Maxwell, L. C., Rüegg, J. C., Bohr, D. F.: Preparation and properties of a calcium ion sensitive actomyosin from arteries. Amer. J. Physiol.219, 1366–1372 (1970).Google Scholar
  37. 37.
    Tritthart, H., Kaufmann, R., Rost, B.: Inotrope Effekte extracellulärer Ca++-Variation an isolierten Herzmuskelzellen in Zellkulturen. Pflügers Arch.307, R 27 (1969).Google Scholar
  38. 38.
    Uchida, E., Bohr, D. F.: Myogenic tone in isolated perfused resistance vessels from rat. Amer. J. Physiol.216, 1343–1350 (1969).Google Scholar
  39. 39.
    Zuberbuhler, R. C., Bohr, D. F.: Responses of coronary smooth muscle to catecholamines. Circulat. Res.16, 431–440 (1965).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Ulrich Peiper
    • 1
  • Erich Schmidt
    • 1
  1. 1.Physiologisches Institut der Universität WürzburgWürzburgGermany

Personalised recommendations