Neuroradiology

, Volume 33, Issue 4, pp 305–309 | Cite as

Decreased cerebral glucose metabolism associated with mental deterioration in multi-infarct dementia

  • K. Meguro
  • C. Doi
  • M. Ueda
  • T. Yamaguchi
  • H. Matsui
  • S. Kinomura
  • M. Itoh
  • K. Yamada
  • H. Sasaki
Originals

Summary

Cerebral glucose metabolism of 18 patients with multi-infarct dementia (MID) and 10 age-matched normal subjects were examined with positron emission tomography and the18-F-fluoro-deoxy-glucose technique. MID patients had significantly lower glucose metabolism in all the grey matter regions measured and were also characterized by more individuality in metabolic pattern. MID patients were also evaluated as to intelligence quotient (IQ). A positive correlation between IQ as shown by the Tanaka-Binet test and glucose metabolism for the entire grey matter was found. The clinical applicability of this test for predicting cerebral metabolism is discussed.

Key words

Senile dementia Multi-infarct dementia Intelligence quotient Glucose metabolism Positron emission tomography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Binet et Simon (1905) Aplication des méthodes nouvelles au diagnostic du nivcau intellectuel chez des enfants normaux et anormaux d'hospice et d'école primaire. Ann Psy 11:5336Google Scholar
  2. 2.
    Loeb C (1988) Clinical criteria for the diagnosis of vascular dementia. Eur Neurol 28:87–92Google Scholar
  3. 3.
    Benson DF (1988) PET/dementia: an update. Neurobiol Aging 9:87–88Google Scholar
  4. 4.
    Leon MJ, George AE, Marcus DL, Miller JO (1988) Positron emission tomography with the deoxyglucose technique and the diagnosis of Alzheimer's disease. Neurobiol Aging 9:88–90Google Scholar
  5. 5.
    Cutler NR (1988) Cognitive and brain imaging measures of Alzheimer's disease. Neurobiol Aging 9:9092Google Scholar
  6. 6.
    Kuhl DE (1988) Dementia: clinical application of positron emission tomography. Am J Physiol Imaging 3:59–60Google Scholar
  7. 7.
    Riege WH, Metter EJ (1988) Cognitive and brain imaging measures of Alzheimer's disease. Neurobiol Aging 9:69–86Google Scholar
  8. 8.
    Jagust WJ, Friedland RP, Budinger TF (1985) Positron emission tomography with [18F] fluorodeoxyglucose differentiates normal pressure hydrocephalus from Alzheimer type dementia. J Neurol Neurosurg Psychiatry 48:1091–1096Google Scholar
  9. 9.
    Friedland RP, Budinger TF, Koss E, Ober BA (1985) Alzheimer's disease: anterior-posterior and lateral hemispheric alterations in cortical glucose utilization. Neurosci Lett 53:235–240Google Scholar
  10. 10.
    Foster NL, Chase TN, Mansi L, Brooks R, Fedio P, Patronas NJ, DiChiro G (1984) Cortical abnormalities in Alzheimer's disease. Ann Neurol 16:649–654FGoogle Scholar
  11. 11.
    Chase TN, Foster NL, Fedio P, Brooks R, Mansi L, Chiro GO (1984) Regional cortical dysfunction in Alzheimer's disease as determined by positron emission tomography. Ann Neurol 15 [Suppl]: S170-S174Google Scholar
  12. 12.
    Foster NL, Chase TN, Patronas NJ, Gillespie MM, Fedio P (1986) Cerebral mapping of apraxia in Alzheimer's disease by positron emission tomography. Ann Neurol 19:139–143Google Scholar
  13. 13.
    Rapoport SI, Horwitz B, Haxby JV, Grady CL (1986) Alzheimer's disease: metabolic uncoupling of associative brain regions. Can J Neurol Sci 13:540–545Google Scholar
  14. 14.
    Koss E, Friedland RP, Ober BA, Jagust WJ (1985) Differences in lateral hemispheric asymmetries of glucose utilization between early- and late-onset Alzheimer-type dementia. Am J Psychiatr 142:638–640Google Scholar
  15. 15.
    Kuhl DE, Metter EJ, Riege WH (1983) Local cerebral glucose utilization in elderly patients with depression, multiple infarct dementia and Alzheimer's disease. J Cereb Blood Flow Metab 3 [Suppl 1]:S494-S495Google Scholar
  16. 16.
    Hachinski VC, Iliff LD, Zilkha E, Du Boulay GH, McAllister VL, Marshall J, Russel R, Symon L (1975) Cerebral blood flow in dementia. Arch Neurol 32:632–637Google Scholar
  17. 17.
    Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local glucose metabolic rate in humans with (F0-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6:371–388Google Scholar
  18. 18.
    Itoh M, Hatazawa J, Yamaura H, Matsuzawa T (1981) Age-related brain atrophy and mental deterioration. Br J Radiol 54: 384–390Google Scholar
  19. 19.
    Takeda S, Matsuzawa T (1984) Brain atrophy during aging. J Am Geriatr Soc 32:520–524Google Scholar
  20. 20.
    Duara R, Gross-Glenn K, Barker WW, Chang JY, Apicella A, Loewenstein D, Boothe T (1987) Behavioral activation and the variability of cerebral glucose metabolic measurements. J Cereb Blood Flow Metab 7:266–271Google Scholar
  21. 21.
    Gustafson L, Risberg J, Johanson M (1984) Evaluation of organic dementia by regional blood flow measurements and clinical and psychomentric tests. Monogr Neural Sci 2:111–117Google Scholar
  22. 22.
    Chase TN, Burrows GH, Mohr E (1987) Cortical glucose utilization patterns in primary degenerative dementias of the anterior and posterior type. Arch Gerontol Geriatr 6:289–297Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • K. Meguro
    • 1
    • 2
  • C. Doi
    • 3
  • M. Ueda
    • 2
  • T. Yamaguchi
    • 1
  • H. Matsui
    • 4
  • S. Kinomura
    • 2
    • 4
  • M. Itoh
    • 5
  • K. Yamada
    • 4
  • H. Sasaki
    • 1
  1. 1.Department of Geriatric MedicineTohoku University School of MedicineSendaiJapan
  2. 2.Miyama HospitalSendaiJapan
  3. 3.Department of PsychologyTohoku University School of LiteratureSendaiJapan
  4. 4.Department of Radiology and Nuclear Medicine, The Research Institute for Tuberculosis and CancerTohoku UniversitySendaiJapan
  5. 5.Cyclotron Radioisotope CenterTohoku University School of MedicineSendaiJapan

Personalised recommendations