Skip to main content
Log in

The “in vivo” and “in vitro” CO2-equilibration curves of blood during acute hypercapnia and hypocapnia

I. Experimental investigations

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

The theory that the base excess (BE) of blood is influenced during short respiratory disturbances by bicarbonate exchange with the interstitial fluid was quantitatively tested. During inspiration of CO2 and during active hyperventilation of awake man measurements in arterialized ear-lobe and venous blood were made. During hypercapnia BE decreased by 0.09 meq/l per mm HgpCO2-During hypocapnia it increased by 0.06–0.08 meq/l · mm Hg, after correction for newly formed lactic acid, however, an increase of 0.09–0.10 meq/l · mm Hg was found.

For hyper- as well as for hypocapnia practically linear “in vivo” CO2-equilibration curves with similar slopes were obtained in the [H+]-pCO2 and in the pH-logpCO2 coordinate system. The equation of the common equilibration line from pH 7.25–7.75 is:

$$\log {\mathbf{ }}p{\text{CO}}_{\text{2}} = - 1.23{\text{pH + 10}}{\text{.71}}{\text{.}}$$

The slope is flatter than for blood under “in vitro” conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albers, C.: Der Mechanismus des Wärmehechelns beim Hund. III. Die CO2-Empfindlichkeit des Atemzentrums während des Wärmehechelns. Pflügers Arch. ges. Physiol.274, 166–183 (1961)

    Google Scholar 

  2. Arbus, G. S., Herbert, L. A., Levesque, P. R., Etsten, E., Schwartz, W. B.: Characterization and clinical application of the “significance band” for acute respiratory alkalosis. New Engl. J. Med.280, 117–123 (1969)

    Google Scholar 

  3. Armstrong, B. W., Mohler, J. G., Jung, R. C., Remmers, J.: The in vivo carbon-dioxide titration curve. Lancet1966 I, 759–761

  4. Astrup, P.: A simple electrometric technique for the determination of carbon-dioxide tension in blood and plasma, total content of carbon-dioxide in plasma, and bicarbonate content in “separated” plasma at a fixed carbon-dioxide tension (40 mm Hg). Scand. J. clin. Lab. Invest.8, 33–43 (1956)

    Google Scholar 

  5. Bärtschi, F., Haab, P., Held, D. R.: Reliability of bloodpCO2-measurements by the CO2-electrode, the whole-blood CCO2/pH method and the Astrup method. Respir. Physiol.10, 121–131 (1970)

    Google Scholar 

  6. Beecher, H. K., Murphy, A. J.: Acidosis during thoracic surgery. J. thorac. Surg.19, 50–70 (1950)

    Google Scholar 

  7. Böning, D.: Veränderungen der CO2-Bindungskurve des Blutes bei akuter respiratorischer Acidose und ihre Ursachen. I. Untersuchungen an Hunden. Pflügers Arch.302, 133–148 (1968)

    Google Scholar 

  8. Böning, D.: The “in vivo” and “in vitro” CO2-equilibration curves of blood during acute hypercapnia and hypocapnia. II. Theoretical considerations. Pflügers Arch.350, 213–222 (1974)

    Google Scholar 

  9. Böning, D., Heinrich, K. W.: Veränderungen der CO2-Bindungskurve des Blutes bei akuter respiratorischer Acidose und ihre Ursachen. II. Untersuchungen an Menschen. Pflügers Arch.303, 162–172 (1968)

    Google Scholar 

  10. Brackett, N. C., Jr., Cohen, J. J., Schwartz, W. B.: Carbon dioxide titration curve of normal man. Effect of increasing degrees of acute hypercapnia on acid-base equilibrium. New Engl. J. Med.272, 6–12 (1965)

    Google Scholar 

  11. Brown, E. B., Jr.: Plasma electrolyte composition in dogs breathing high CO2-mixtures: source of bicarbonate deficit in severe respiratory acidosis. J. Lab. clin. Med.55, 767–775 (1960)

    Google Scholar 

  12. Brown, E. B., Jr., Clancy, R. L.: In vivo and in vitro CO2 blood buffer curves. J. appl. Physiol.20, 885–889 (1965)

    Google Scholar 

  13. Bücherl, E. S.: Säure-Basenstoffwechsel und Elektrolytveränderungen bei experimenteller respiratorischer Acidose und ihre Kompensation durch Infusion von Natriumbikarbonatlösung. Thoraxchirurgie10, 316–330 (1963)

    Google Scholar 

  14. Cohen, J. J., Brackett, N. C., Jr., Schwartz, W. B.: The nature of the carbon dioxide titration curve in the normal dog. J. clin. Invest.43, 777–786 (1964)

    Google Scholar 

  15. Davies, H. W., Haldane, J. B. S., Kennaway, E. L.: Experiments on the regulation of the blood's alkalinity. J. Physiol. (Lond.)54, 32–42 (1920)

    Google Scholar 

  16. Eckstein, J. W., Hamilton, W. K., McCammond, J. M.: Pressure-volume changes in the forearm veins of man during hyperventilation. J. clin. Invest.37, 956–961 (1958)

    Google Scholar 

  17. Eichenholz, A., Mulhausen, R. O., Anderson, W. E., McDonald, F. M.: Primary hypocapnia: a cause of metabolic acidosis. J. appl. Physiol.17, 283–288 (1962)

    Google Scholar 

  18. Elkinton, J. R., Singer, R. B., Barker, E. S., Clark, J. K.: Effects in man of acute experimental respiratory alkalosis and acidosis on ionic transfers in total body fluids. J. clin. Invest.34, 1671–1690 (1955)

    Google Scholar 

  19. Engel, K., Kildeberg, P., Winters, R. W.: Quantitative displacement of blood acid-base status in acute hypocapnia. Scand. J. clin. Lab. Invest.23, 5–17 (1969)

    Google Scholar 

  20. Frumin, M. J., Epstein, R. M., Cohen, G.: Apneic oxygenation in man. Anesthesiology20, 789–798 (1959)

    Google Scholar 

  21. Garcia, A. C., Lai, Y. L., Attebery, B. A., Brown, E. B., Jr.: In vivo CO2 buffer curves of arterial and mixed venous blood. Proc. Soc. exp. Biol. (N. Y.)137, 237–242 (1971a)

    Google Scholar 

  22. Garcia, A. C., Lai, Y. L., Attebery, B. A., Brown, E. B., Jr.: Lactate and pyruvate accumulation during hypocapnia. Respir. Physiol.12, 371–380 (1971b)

    Google Scholar 

  23. Giebisch, G., Berger, L., Pitts, R. F.: The extrarenal response to acute acidbase disturbances of respiratory origin. J. clin. Invest.34, 231–245 (1955)

    Google Scholar 

  24. Holaday, D. A.: The intracellular and whole blood acid-base response to acute CO2 retention in vivo. Ann. N. Y. Acad. Sci.133, 172–179 (1966)

    Google Scholar 

  25. Huckabee, W. E.: Relationships of pyruvate and lactate during anaerobic metabolism. I. Effects of infusion of pyruvate or glucose and of hyperventilation. J. clin. Invest.37, 244–254 (1958)

    Google Scholar 

  26. Ichiyanagi, K., Masuko, K., Nishisaka, N., Matsuki, M., Horikawa, H., Watanabe, R.: Acid-base changes of arterial plasma during exogenous and endogenous hypercapnia in man. Respir. Physiol.7, 310–325 (1969)

    Google Scholar 

  27. Michajlik, A., Bogdanska-Czarnyszewicz, B., Jung, M., Lisicki, J.: Quantitative acid-base dynamics in acute passive hyperventilation. Acta med. pol.13, 397–403 (1972)

    Google Scholar 

  28. Michel, C. C., Lloyd, B. B., Cunningham, D. J. C.: The in vivo carbon-dioxide dissociation curve of true plasma. Respir. Physiol.1, 121–137 (1966)

    Google Scholar 

  29. Papadopoulos, C. N., Keats, A. S.: The metabolic acidosis of hyperventilation produced by controlled respiration. Anesthesiology20, 156–162 (1959)

    Google Scholar 

  30. Plum, F., Posner, J. B.: Blood and cerebrospinal fluid lactate during hyperventilation. Amer. J. Physiol.212, 864–870 (1967)

    Google Scholar 

  31. Prys-Roberts, C., Kelman, G. R., Nunn, J. F.: Determination of the in vivo carbon dioxide titration curve of anesthetized man. Brit. J. Anaesth.38, 500–50 (1966)

    Google Scholar 

  32. Roos, A., Thomas, J. L.: The in-vitro and in-vivo carbon dioxide dissociation curves of true plasma: A theoretical analysis. Anesthesiology28, 1048–1063 (1967)

    Google Scholar 

  33. Rosenbaum, J. D.: The influence of alterations in acid-base balance upon transfers of carbon dioxide and bicarbonate in man. J. clin. Invest.21, 735–746 (1942)

    Google Scholar 

  34. Shaw, L. A., Messer, A. C.: The transfer of bicarbonate between the blood and tissues caused by alterations of the carbon dioxide concentration in the lungs. Amer. J. Physiol.100, 122–136 (1932)

    Google Scholar 

  35. Shock, N. W., Hastings, A. B.: Studies of the acid-base balance of the blood. IV. Characterization and interpretation of displacement of the acid-base balance. J. biol. Chem.112, 239–262 (1935)

    Google Scholar 

  36. Siggaard-Andersen, O.: The acid-base status of the blood. Copenhagen: Munksgaard 1964

    Google Scholar 

  37. Singer, R. B., Clark, J. K., Barker, E. S., Elkinton, J. R.: The effects of acute respiratory alkalosis on electrolyte excretion and renal hemodynamics in man. J. clin. Invest.31, 633 (1952)

    Google Scholar 

  38. Stegemann, J., Seez, P., Kremer, W.: The response curve to carbon dioxide in athletes and nonathletes. Pflügers Arch.335, Suppl., R 35 (1972)

    Google Scholar 

  39. Swan, R. C., Axelrod, D. R., Seip, M., Pitts, R. F.: Distribution of sodium bicarbonate infused into nephrectomized dogs. J. clin. Invest.34, 1795–1801 (1955)

    Google Scholar 

  40. Weber, E.: Grundriß der biologischen Statistik. Stuttgart: Fischer 1967

    Google Scholar 

  41. Wissenschaftliche Tabellen. Basel: J. R. Geigy AG 1968

  42. Zborowska-Sluis, D. T., Dossetor, J. B.: Hyperlactatemia of hyperventilation. J. appl. Physiol.22, 746–755 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Deutsche Forschungsgemeinschaft BO 360/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böning, D., Schweigart, U. & Nutz, V. The “in vivo” and “in vitro” CO2-equilibration curves of blood during acute hypercapnia and hypocapnia. Pflugers Arch. 350, 201–212 (1974). https://doi.org/10.1007/BF00587799

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00587799

Key words

Navigation