Skip to main content

Glasses from aerogels

Part 1 The synthesis of monolithic silica aerogels

Abstract

Experiments carried out to obtain monolithic silica aerogels are reported. The different ways to synthesize silica aerogels from alkoxides are investigated. The manner by which the critical point of the solvent can be reached is discussed as a function of the nature of the solvent. Physical parameters such as the amount of additional solvent or pressure, play a very important role in the direction of the liquid-vapour interface displacement during the heating of the autoclave. Some experiments performed using hypercritical drying with CO2 liquid are also mentioned.

This is a preview of subscription content, access via your institution.

References

  1. S. S. Kistler,Nature 121 (1931) 741.

    Google Scholar 

  2. Idem., J. Phys. Chem. 36 (1932) 52.

    Google Scholar 

  3. G. A. Nicolaon andS. J. Teichner,Bull. Soc. Fr. Chimie 5 (1968) 1906.

    Google Scholar 

  4. S. J. Teichner, G. A. Nicolaon, M. A. Vicarini andM. E. E. Gardes,Adv. Colloid. Interface Sci. 5 (1976) 245.

    Google Scholar 

  5. J. B. Peri andR. B. Hannan,J. Phys. Chem. 64 (1960) 1526.

    Google Scholar 

  6. J. Fricke, in “Aerogels”, Proceedings of the 1st International Symposium, Würzburg, edited by J. Fricke, (Springer, Berlin 1986) p. 94.

    Google Scholar 

  7. O. Nilsson, A. Franson andO. Sandberg,ibid.in, edited by J. Fricke, (Springer, Berlin 1986) p. 167.

    Google Scholar 

  8. R. Calemczuk, A. M. De Goer, B. Salce, R. Maynard andA. Zarembowich,Europhys. Lett. 3 (1987) 1205.

    Google Scholar 

  9. M. Gronauer, A. Kadur andJ. Fricke, in “Aerogels⌉d, Proceedings of the 1st International Symposium, Würzburg, edited by J. Fricke (Springer, Berlin, 1986) p. 167.

    Google Scholar 

  10. T. Woignier, J. Pelous, J. Phalippou andR. Sempere,J. Physique 49 (1988) 289.

    Google Scholar 

  11. D. W. Schaefer andK. D. Keeper,Phys. Rev. Lett. 56 (1988) 2199.

    Google Scholar 

  12. R. Vacher, T. Woignier, J. Pelous andE. Courtens,Phys. Rev. B 37 (1988) 6500.

    Google Scholar 

  13. M. Cantin, M. Casse, L. Koch, R. Jouan, P. Mestrau, D. Roussel, F. Bonnin, J. Moutel andS. J. Teichner,Nucl. Instrum. Methods 118 (1974) 177.

    Google Scholar 

  14. S. Henning andL. S. Svenson,Phys. Scripta 23 (1981) 63.

    Google Scholar 

  15. M. Prassas, Thesis, Montpellier (December 1981).

  16. M. Prassas, J. Phalippou andJ. Zarzycki,Glastechn. Ber. 56 K (1983) 542.

    Google Scholar 

  17. T. Woignier, J. Phalippou andM. Prassas,J. Mater. Sci. 25 (1990) 3118–3126.

    Google Scholar 

  18. J. B. Peri,J. Phys. Chem. 70 (1966) 2937.

    Google Scholar 

  19. R. Eötvös,Wied Ann. Phys. 27 (1886) 448.

    Google Scholar 

  20. S. Kitahara, K. Takada, T. Sakata andH. Muraishi,J. Colloid. Interface Sci. 84 (1981) 519.

    Google Scholar 

  21. R. K. Iler, “The Chemistry of Silica” (Wiley, New York, 1979).

    Google Scholar 

  22. T. Woignier, Thesis, Montpellier (January 1984).

  23. C. A. M. Mulder andJ. G. Van Lierop, in “Aerogels”, Proceedings of the 1st International Symposium, Würzburg, edited by J. Fricke (Springer, Berlin, 1986).

    Google Scholar 

  24. D. F. Othmer andR. F. Benenati,Ind. Eng. Chem. 37 (1945) 299.

    Google Scholar 

  25. C. A. Jones, E. M. Schoenborn andA. P. Colburn,ibid. 35 (1943) 666.

    Google Scholar 

  26. P. S. Murti andM. Van Winkle,J. Chem. Eng. Sci. 3 (1958) 72.

    Google Scholar 

  27. F. Barr-David andB. F. Dodge,J. Chem. Eng. data 4 (1959) 107.

    Google Scholar 

  28. D. J. Cox,Ind. Eng. Chem. 15 (1923) 592.

    Google Scholar 

  29. A. O. Delzenne,J. Chem. Eng. Sci. 3 (1958) 224.

    Google Scholar 

  30. G. M. Schneider,Adv. Chem. Phys. 17 (1970) 1.

    Google Scholar 

  31. J. Griswold, J. D. Haney andV. A. Klein,Ind. Eng. Chem. 35 (1943) 701.

    Google Scholar 

  32. E. R. Gilliland,ibid. 28 (1936) 212.

    Google Scholar 

  33. T. Woignier, J. Phalippou andR. Vacher, in “Better Ceramics through Chemistry III”, Vol. 21, edited by C. J. Brinker, D. E. Clark and D. R. Ulrich (Materials Research Society, Pittsburgh, 1988) p. 647.

    Google Scholar 

  34. J. C. Van Lierop, A. Huizing, W. C. P. M. Meerman andC. A. M. Mulder,J. Non-Cryst. Solids 82 (1986) 363.

    Google Scholar 

  35. B. Lefrancois, Y. Bourgeois,Chim. Ind. Génie Physique 105 (1972) 989.

    Google Scholar 

  36. T. Woignier andJ. Phalippou in Proceedings of the 1st International Workshop on Non-Crystalline Solids, San Feliu de Guixols, edited by M. D. Baro, N. Clavaguera (World Scientific, Singapore, 1986) p. 415.

    Google Scholar 

  37. P. J. Lea andS. A. Ramjohn,Microsc. Acta. 83 (1980) 291.

    Google Scholar 

  38. S. Fillet, J. Phalippou, J. Zarzycki andJ. L. Nogues,J. Non-Cryst. Solids 82 (1986) 232.

    Google Scholar 

  39. C. J. Brinker, K. J. Ward, K. D. Keeper, E. Holupka, P. J. Bray andR. K. Pearson, in “Aerogels”, Proceedings of the 1st International Symposium, Würzburg, edited by J. Fricke (Springer, Berlin, 1986) p. 57.

    Google Scholar 

  40. P. H. Tewari, A. J. Hunt andK. D. Lofftus,Mater. Lett. 3 (1985) 363.

    Google Scholar 

  41. A. W. Francis,J. Phys. Chem. 58 (1954) 1099.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Phalippou, J., Woignier, T. & Prassas, M. Glasses from aerogels. J Mater Sci 25, 3111–3117 (1990). https://doi.org/10.1007/BF00587659

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00587659

Keywords

  • Polymer
  • Physical Parameter
  • Alkoxide
  • Silica Aerogel
  • Interface Displacement