Journal of Materials Science

, Volume 25, Issue 7, pp 3067–3071 | Cite as

Physicochemical studies on ZnO-Al2O3 system

  • M. A. Mousa
  • E. M. Diefallah
  • A. A. Abdel Fattah
  • Z. A. Omran
Papers

Abstract

Several mixed ZnO-Al2O3 systems were prepared by the impregnation method and calcined for 5 h at 300, 600 and 1000 ° C. The crystal structure, surface acidity, surface basicity, surface area, catalytic decomposition of H2O2 and the electrical conductivity of the samples prepared were studied. It was found that the decomposition of H2O2 is catalysed by the acidic sites formed on the catalyst surface at composition less than 50 mol% ZnO and by basic sites for oxides having composition higher than 50 mol% ZnO. ZnAl2O4-spinel was found to be formed at temperatures ⩾ 600 ° C and it has a catalytic activity and electrical conductivity lower than each of the pure ZnO and the oxide mixtures. The results obtained were correlated together and discussed.

Keywords

Oxide Polymer H2O2 Crystal Structure Electrical Conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Mousa andM. A. Ahmed,Thernwchimica Acta,125 (1988) 379.Google Scholar
  2. 2.
    M. A. Mousa, E. A. Gomaa, A. A. Elkhouly, A. A. M. Aly andH. F. Aly,J. Radioanal. Nucl. Chem. Lett. 87 (1984) 81.Google Scholar
  3. 3.
    J. R. Goldstein andC. C. Tseung,J. Catal. 32 (1974) 452.Google Scholar
  4. 4.
    P. Porta, F. S. Stone andR. G. Turner,J. Solid State Chem. 11 (1974) 135.Google Scholar
  5. 5.
    P. S. Jain andV. S. Darshane,J. Ind. Chem. Soc. 18 (1981) 354.Google Scholar
  6. 6.
    M. M. Selim, G. A. El-Shobaky andA. I. Kira,Surf. Technol. 10 (1980) 73.Google Scholar
  7. 7.
    G. A. El-Shobaky, M. M. Selim andI. F. Hewaidy,ibid.,10 (1980) 55.Google Scholar
  8. 8.
    B. Bracconic andL. C. Dufour,J. Phys. Chem. 79 (1975) 2395.Google Scholar
  9. 9.
    K. Tanabe, “Solid Acids and Bases”, (Academic Press, New York, 1970).Google Scholar
  10. 10.
    S. P. Walveker andA. B. Halgeri,J. Ind. Chem. Soc. 50 (1973) 387.Google Scholar
  11. 11.
    Idem.,400 (1973) 83.Google Scholar
  12. 12.
    V. Mucka,Collec. Czech. Chem. Commun. 46 (1981) 876.Google Scholar
  13. 13.
    Idem., ibid. Collec. Czech. Chem. Commun. 49 (1984) 1.Google Scholar
  14. 14.
    O. Johnson,J. Phys. Chem. 59 (1955) 827.Google Scholar
  15. 15.
    K. B. Keating, M. Matsumoto andKoboyashi,J. Catal. 21 (1971) 48.Google Scholar
  16. 16.
    M. A. Mousa, E. A. Gomaa, A. A. El-Khouly,Mater. Chem. Phys. 11 (1984) 433.Google Scholar
  17. 17.
    K. Nakamoto, “Infrared Spectra of Inorganic and Coordination Compounds”, (Wiley, New York, 1963).Google Scholar
  18. 18.
    H. Sallfield,Z. Krist. 120 (1964) 476.Google Scholar
  19. 19.
    A. D. Wadsley andS. Anderson, “Perspectives in Structural Chemistry” (Academic Press, New York, 1970).Google Scholar
  20. 20.
    J. Brenet andP. Faber,J. Power Sources,4 (1979) 203.Google Scholar
  21. 21.
    A. R. Hutson,J. Chem. Solid. 8 (1959) 467.Google Scholar
  22. 22.
    R. J. Brook, J. Yee andF. A. Kroger,J. Amer. Ceram. Soc.,54 (1971) 444.Google Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • M. A. Mousa
    • 1
  • E. M. Diefallah
    • 1
  • A. A. Abdel Fattah
    • 1
  • Z. A. Omran
    • 1
  1. 1.Chemistry Department, Faculty of ScienceBenha UniversityBenhaEygpt

Personalised recommendations