Skip to main content
Log in

Effects of vasopressin on water and NaCl transport across the in vitro perfused medullary thick ascending limb of Henle's loop of mouse, rat, and rabbit kidneys

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Direct tubular effects of arginine vasopressin (AVP) on water and NaCl transport across the medullary thick ascending limb of Henle (MAL) were examined by the in vitro perfusion of isolated nephron fragments of mice, rats, and rabbits. Osmotic water permeability of the MAL of mice and rats was low and remained unchanged with 2 mU/ml AVP added to the bath. A dose-dependent increase in transepithelial electrical potential difference (PD) with AVP was observed in the mouse MAL when the ambient medium was isotonic. A similar result was also obtained when 2×10−4 mol/l dibutyryl adenosine 3′,5′-cyclic-monophosphate was added to the bath. In this preparation, AVP also caused an increase in the unidirectional Cl efflux from 323±45 to 398±61 pmoles·mm−1 ·min−1 (n=6,P<0.05). In contrast, under similar condition, we could not demonstrate any effect of AVP on PD, Cl efflux, or net Na flux in the rat MAL and on PD and Cl efflux in the rabbit MAL. Both PD and Cl efflux in the rat MAL were unaffected by AVP when the perfusate was made hypotonic. However, when the ambient medium was made hypertonic by adding NaCl and urea, a significant increase in PD was observed. In addition, we confirmed that AVP stimulated adenylate cyclase activity in the MAL as well as in the collecting tubule of mice and rats. We conclude that AVP stimulates Cl transport across the MAL of mice and rats by activating adenylate cyclase-cyclic AMP system. However, this effect of AVP may quantitatively vary among species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoniou, L. D., Burke, T. J., Robinson, R. R., Clapp, J. R.: Vasopressin-related alterations of sodium reabsorption in the loop of Henle. Kidney Int.3, 6–13 (1973)

    Google Scholar 

  2. Barry, P. H., Diamaond, J. M.: Junction potentials, electrode standard potentials, and other problems in interpreting electrical properties of membrane. J. Membr. Biol.3, 93–122 (1970)

    Google Scholar 

  3. Burg, M. B., Green, N.: Function of the thick ascending limb of Henle's loop. Am. J. Physiol.224, 659–668 (1973)

    Google Scholar 

  4. Burg, M. B., Grantham, J. J., Abramow, M., Orloff, J.: Preparation and study of fragments of single rabbit nephrons. Am. J. Physiol.210, 1293–1298 (1966)

    Google Scholar 

  5. Chabardès, D., Imbert-Teboul, M., Gagnan-Brunette, M., Morel, F.: Different hormonal target sites along the mouse and rabbit nephrons. In: Biochemical nephrology (W. G. Guder, U. Schmidt, eds.), pp. 447–454. Bern: Huber 1978

    Google Scholar 

  6. Chalfie, M., Neufeld, A. H., Zadunaisky, J. A.: Action of epinephrine and other cyclic AMP-mediated agents on the chloride transport of the frog cornea. Invest. Ophthalmol.11, 644–650 (1972)

    Google Scholar 

  7. Field, M.: Ion transport in rabbit ileal mucosa. II. Effects of cyclic 3′,5′-AMP. Am. J. Physiol.221, 992–997 (1971)

    Google Scholar 

  8. Fourman, J., Kennedy, G. C.: An effect of antidiuretic hormone on the flow of blood through the vasa recta of the rat kidney. J. Endocrinol.35, 173–176 (1966)

    Google Scholar 

  9. Frindt, G., Burg, M. B.: Effect of vasopressin on sodium transport in renal cortical collecting tubules. Kidney Int.1, 224–231 (1972)

    Google Scholar 

  10. Grantham, J. J., Burg, M. B.: Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am. J. Physiol.211, 255–259 (1966)

    Google Scholar 

  11. Grantham, J. J., Orloff, J.: Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3′,5′-monophosphate, and theophylline. J. Clin. Invest.47, 1154–1161 (1968)

    Google Scholar 

  12. Hail, D. A.: Possible role of vasopressin in regulating solute transport in mouse medullary thick ascending limb of Henle's loop. Clin. Res.27, 416A (1979)

    Google Scholar 

  13. Hall, D. A., Barnes, L. D., Dousa, T. P.: Cyclic AMP in action of antidiuretic hormone: Effect of exogenous cyclic AMP and its new analogues. Am. J. Physiol.232, F368-F376 (1977)

    Google Scholar 

  14. Humphreys, M. H., Friedler, R. M., Earley, L. E.: Natriuresis produced by vasopressin or hemorrhage during water diuresis in the dog. Am. J. Physiol.216, 658–664 (1970)

    Google Scholar 

  15. Imbert, M., Chabardès, D., Montégut, M., Clique, A., Morel, F.: Adenylate cyclase activity along the rabbit nephron as measured in single isolated segments. Pflügers Arch.354, 213–228 (1975)

    Google Scholar 

  16. Imbert, M., Chabardès, D., Montégut, M., Clique, A., Morel, F.: Vasopressin dependent adenylate cyclase in single segments of rabbit kidney tubule. Pflügers Arch.357, 173–186 (1975)

    Google Scholar 

  17. Imbert-Teboul, M., Chabardès, D., Montégut, M., Clique, A., Morel, F.: Vasopressin-dependent adenylate cyclase activities in the rat kidney medulla: Evidence for two separate sites of action. Endocrinology102, 1254–1261 (1978)

    Google Scholar 

  18. Iino, Y., Imai, M.: Effects of prostaglandins on Na transport in isolated collecting tubules. Pflügers Arch.373, 125–132 (1978)

    Google Scholar 

  19. Imai, M.: Function of the thin ascending limb of Henle of rats and hamsters perfused in vitro. Am. J. Physiol.232, F201-F209 (1977)

    Google Scholar 

  20. Imai, M.: Effect of bumetanide and furosemide on the thick ascending limb of Henle's loop of rabbits and rats perfused in vitro. Eur. J. Pharmacol.41, 409–416 (1977)

    Google Scholar 

  21. Imai, M.: The connecting tubule: A functional subdivision of the rabbit distal nephron segments. Kidney Int.15, 346–356 (1979)

    Google Scholar 

  22. Klyce, S. D., Neufeld, A. H., Zadunaisky, J. A.: The activation of chloride transport by epinephrine and Db cyclic-AMP in the cornea of the rabbit. Invest. Ophthalmol.12, 127–139 (1973)

    Google Scholar 

  23. Leaf, A.: Membrane effects of anti-diuretic hormone. Am. J. Med.42, 745–756 (1967)

    Google Scholar 

  24. Martinez-Maldonado, M., Eknoyan, G., Suki, W. N.: Natriuretic effects of vasopressin and cyclic AMP: Possible site of action in the nephron. Am. J. Physiol.220, 2013–2020 (1971)

    Google Scholar 

  25. Morel, F.: Action of neurohypophyseal hormones on the active transport of sodium. In: Water and electrolyte metabolism (II) (J. de Graeff, B. Leijnse, eds.), pp. 91–104. Amsterdam: Elsevier 1964

    Google Scholar 

  26. Morel, F., Chabardés, D., Imbert, M.: Functional segmentation of the rabbit distal tubule by microdetermination of hormone-dependent adenylate cyclase activity. Kidney Int.9, 264–277 (1976)

    Google Scholar 

  27. Orloff, J., Handler, J.: The similarity of vasopressin, adenosine 3′,5′-phosphate (cyclic AMP) and theophylline on the toad bladder. J. Clin. Invest.41, 702–709 (1962)

    Google Scholar 

  28. Powell, D. W., Farris, R. K., Carbonetto, S. T.: Theophylline, cyclic AMP, choleragen, and electrolyte transport by rabbit ileum. Am. J. Physiol.227, 1428–1435 (1974)

    Google Scholar 

  29. Rocha, A. S., Kakko, J. P.: Sodium chloride and water transport in the medullary thick ascending limb of Henle. Evidence for active chloride transport. J. Clin. Invest.52, 612–623 (1973)

    Google Scholar 

  30. Rocha, A. S., Kokko, J. P.: Permeability of medullary nephron segments to urea and water: Effect of vasopressin. Kidney Int.6, 379–387 (1974)

    Google Scholar 

  31. Sawyer, W. H.: Posterior pituitary extracts and excretion of electrolytes by the rat. Am. J. Physiol.169, 583–587 (1952)

    Google Scholar 

  32. Sasaki, S., Imai, M.: Effect of vasopressin on the function of medullary thick ascending limb of Henle perfused in vitro. Jpn. J. Pharmacol. (abstr. in press, 1980)

  33. Schäfer, J. A., Andreoli, T. E.: Cellular constraints to diffusion. J. Clin. Invest.51, 1264–1278 (1972)

    Google Scholar 

  34. Schnermann, J., Valtin, H., Thurau, K., Nagel, W., Horster, M., Fischbach, H., Wahl, M., Liebau, G.: Micropuncture studies on the influence of antidiuretic hormone on tubular fluid reabsorption in rats with hereditary hypothalamic diabetes insipidus. Pflügers Arch.306, 103–118 (1969)

    Google Scholar 

  35. Thurau, K., Deetjen, P., Kramer, K.: Hämodynamik des Nierenmarkes. II. Wechselbeziehung zwischen vasculären und tubulären gegenstromsystem arteriellen Drucksteigerungen, Wasserdiurese und osmotischer Diurese. Pflügers Arch.207, 270–285 (1960)

    Google Scholar 

  36. Torikai, S., Imai, M.: A simple method to determine adenylate cyclase activity in isolated single nephron segments by radioimmunoassay for succinyl adenosine 3′,5′-cyclic monophosphate. Tohoku J. Exp. Med.129, 91–99 (1979)

    Google Scholar 

  37. Ussing, H. H., Zerahn, K.: Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand.23, 110–127 (1951)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, S., Imai, M. Effects of vasopressin on water and NaCl transport across the in vitro perfused medullary thick ascending limb of Henle's loop of mouse, rat, and rabbit kidneys. Pflugers Arch. 383, 215–221 (1980). https://doi.org/10.1007/BF00587521

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00587521

Key words

Navigation