Pflügers Archiv

, Volume 320, Issue 3, pp 265–284 | Cite as

Competitive inhibition of phlorizin binding byd-glucose and the influence of sodium: a study on isolated brush border membrane of rat kidney

  • W. Frasch
  • P. P. Frohnert
  • F. Bode
  • K. Baumann
  • R. Kinne


Glucose binding to the luminal cell membrane was studied in the isolated brush border of rat renal cortex by means of inhibition of phlorizin binding to a specific receptor site. This effect was reversible and stereospecific and fulfilled the criteria of fully competitive inhibition. Thus, the kinetic parameters ofd-glucose binding to the same receptor could be derived. The affinity of the receptor to either substrate, phlorizin as well asd-glucose, increased with rising ambient sodium concentration while the number of binding sites remained unchanged. Other cations (K+, Ca++, Mg++) showed no effect on either parameter. The results of this study are in agreement with a model of transmembrane transport of glucose put forward by Crane.


Renal Brush Border d-glucose and Phlorizin Binding Sodium Dependence Competitive Inhibition 


Der hemmende Einfluß von Glucose auf die Bindung von Phlorrhizin an einen spezifischen Receptor des renalen Bürstensaums wurde dazu benutzt, die Glucosebindung der luminalen Zellmembran zu untersuchen. Der Hemmeffekt war sowohl reversibel als auch stereospezifisch und erfüllte die Kriterien einer voll kompetitiven Inhibition. Dieses Verhalten ermöglichte die Berechnung der kinetischen Parameter derd-Glucosebindung. — Steigende Natriumkonzentration im Medium erhöhte die Bindungsaffinität des Receptors sowohl für Phlorrhizin als auch fürd-Glucose, ließ die Zahl der Bindungsstellen jedoch unbeeinflußt. Andere Kationen (K+, Ca++, Mg++) zeigten keine Wirkung. — Damit entsprachen die Resultate dieser Bindungsstudie dem Modell des transmembranalen Glucosetransportes, das von Crane entwickelt worden ist.


Renaler Bürstensaum Membranbindung von Phlorrhizin undd-Glucose Kompetitive Hemmung Natriumabhängigkeit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarado, F.: Hypothesis for the interaction of phlorizin and phloretin with membrane carriers for sugars. Biochim. biophys. Acta. (Amst.)135, 483–495 (1967).Google Scholar
  2. 2.
    —, Crane, R. K.: Phlorizin as a competitive inhibitor of the active transport of sugars by hamster small intestine, in vitro. Biochim. biophys. Acta (Amst.)56, 170–172 (1962).Google Scholar
  3. 3.
    ——: Studies on the mechanism of intestinal absorption of sugars VII. Phenyl-glycoside transport and its possible relationship to phlorizin inhibition of the active transport of sugars by the small intestine. Biochim. biophys. Acta (Amst.)93, 116–135 (1964).Google Scholar
  4. 4.
    Baumann, K., Huang, K. C.: Micropuncture and microperfusion study ofl-glucose secretion in rat kidney. Pflügers Arch.305, 155–166 (1969).Google Scholar
  5. 5.
    Bihler, I., Crane, R. K.: Studies on the mechanism of intestinal absorption of sugars V. The influence of several cations and anions on the active transport of sugars, in vitro, by various preparations of hamster small intestine. Biochim. biophys. Acta (Amst.)59, 78–93 (1962).Google Scholar
  6. 6.
    Bode, F., Baumann, K., Frasch, W., Kinne, R.: Die Bindung von Phlorrhizin an die Bürstensaumfraktion der Rattenniere. Pflügers Arch.315, 53–65 (1970).Google Scholar
  7. 7.
    Bosačková, J., Crane, R. K.: Studies on the mechanism of intestinal absorption of sugars VIII. Cation inhibition of active sugar transport and22Na influx into hamster small intestine, in vitro. Biochim. biophys. Acta (Amst.)102, 423–435 (1965).Google Scholar
  8. 8.
    Caspary, W. F., Crane, R. K.: Inclusion ofl-Glucose within the specificity limits of the active sugar transport system of hamster small intestine. Biochim. biophys. Acta (Amst.)163, 395–400 (1968).Google Scholar
  9. 9.
    Chan, S. S., Lotspeich, W. D.: Comparative effects of phlorizin and phloretin on glucose transport in the cat kidney. Amer. J. Physiol.203, 975–979 (1962).Google Scholar
  10. 10.
    Crane, R. K.: Na+-dependent transport in the intestine and other animal tissues. Fed. Proc.24, 1000–1006 (1965).Google Scholar
  11. 11.
    —: Absorption of sugars. In: Handbook of Physiology, Section 6: Alimentary Canal, Vol. III, pp. 1323–1351, ed. C. F. Code and W. Heidel. Baltimore: The Williams & Wilkins Company 1968.Google Scholar
  12. 12.
    —, Field, R. A., Cori, C. F.: Studies of tissue permeability I. The penetration of sugars into the Ehrlich ascites tumor cells. J. biol. Chem.224, 649–662 (1957).Google Scholar
  13. 13.
    —, Forstner, G., Eichholz, A.: Studies on the mechanism of the intestinal absorption of sugars. X. An effect of Na+ concentration on the apparent Michaelis constants for intestinal sugar transport, in vitro. Biochim. biophys. Acta (Amst.)109, 467–477 (1965).Google Scholar
  14. 14.
    Csáky, T. Z.: A possible link between active transport of electrolytes and nonelectrolytes. Fed. Proc.22, 3–7 (1963).Google Scholar
  15. 15.
    —, Thale, M.: Effect of ionic environment on intestinal sugar transport. J. Physiol. (Lond.)151, 59–65 (1960).Google Scholar
  16. 16.
    Diedrich, D. F.: Comparison of effects of phlorizin and phloretin 2′-galactoside on the renal tubular reabsorption of glucose in dog. Biochim. biophys. Acta (Amst.)47, 618–620 (1961).Google Scholar
  17. 17.
    —: The comparative effects of some phlorizin analogs on the renal reabsorption of glucose. Biochim. biophys. Acta (Amst.)71, 688–700 (1963).Google Scholar
  18. 18.
    —: In vitro evaluation of relative inhibitory potency of phlorizin and its congeners. Amer. J. Physiol.209, 621–626 (1965).Google Scholar
  19. 19.
    —: Competitive inhibition of intestinal glucose transport by phlorizin analogs. Arch. Biochem.117, 248–256 (1966).Google Scholar
  20. 20.
    —: Glucose transport carrier in dog kidney: its concentration and turnover number. Amer. J. Physiol.211, 581–587 (1966).Google Scholar
  21. 21.
    —: Is phloretin the sugar transport inhibitor in intestine? Arch. Biochem.127, 803–812 (1968).Google Scholar
  22. 22.
    Dixon, M., Webb, E. C.: Enzymes. London: Longmans, Green and Co, LTD 1966.Google Scholar
  23. 23.
    Eadie, G. S.: The inhibition of cholinesterase by physostigmine and prostigmine. J. biol. Chem.146, 85–93 (1942).Google Scholar
  24. 24.
    Eichholz, A., Howell, K. E., Crane, R. K.: Studies on the organization of the brush border in intestinal epithelial cells VI. Glucose binding to isolated intestinal brush borders and their subfractions. Biochim. biophys. Acta (Amst.)193, 179–192 (1969).Google Scholar
  25. 25.
    Faust, R. G., Leadbetter, M. G., Plenge, R. K., McCaslin, A. J.: Active sugar transport by the small intestine. J. gen. Physiol.52, 482–494 (1968).Google Scholar
  26. 26.
    Frasch, W., Frohnert, P. P., Bode, F., Baumann, K., Kinne, R.: Natriumabhängige, kompetitive Hemmung der Bindung von Phlorrhizin an die Bürstensaummembran der Rattenniere durchd-Glucose. Pflügers Arch.316, R34 (1970).Google Scholar
  27. 27.
    Frieden, C.: Treatment of enzyme kinetic data I. The effect of modifiers on the kinetic parameters of single substrate enzymes. J. biol. Chem.239, 3522 to 3531 (1964).Google Scholar
  28. 28.
    Frohnert, P. P., Höhmann, B., Zwiebel, R., Baumann, K., Papavassiliou, F.: Free flow micropuncture studies of glucose transport in the rat nephron. Pflügers Arch.315, 66–85 (1970).Google Scholar
  29. 29.
    Goldner, A. M., Schultz, S. G., Curran, P. F.: Sodium and sugar fluxes across the mucosal border of rabbit ileum. J. gen. Physiol.53, 362–383 (1969).Google Scholar
  30. 30.
    Hemstedt, H., Schmitz, J.-E., Kinne-Saffran, E., Kinne, R.: Morphologische und biochemische Untersuchungen der Oberflächenstruktur des Bürstensaums der Rattenniere. (In preparation.)Google Scholar
  31. 31.
    Hofstee, B. H. J.: On the evaluation of the constantsV m andK m in enzyme reactions. Science116, 329–331 (1952).Google Scholar
  32. 32.
    Hunter, A., Downs, C. E.: The inhibition of arginase by amino acids. J. biol. Chem.157, 427–446 (1945).Google Scholar
  33. 33.
    Khuri, R. N., Flanigan, W. J., Oken, D. E., Solomon, A. K.: Influence of electrolytes on glucose absorption in Necturus kidney proximal tubules. Fed. Proc.25, 899–902 (1966).Google Scholar
  34. 34.
    Kinne, R., Kinne-Saffran, E.: Isolierung und enzymatische Charakterisierung einer Bürstensaumfraktion der Rattenniere. Pflügers Arch.308, 1–15 (1969).Google Scholar
  35. 35.
    Kinter, W. B., Wilson, T. H.: Autoradiographic study of sugar and amino acid absorption by everted sacs of hamster intestine. J. Cell Biol.25, 19–39 (1965).Google Scholar
  36. 36.
    Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Amer. chem. Soc.40, 1361–1403 (1918).Google Scholar
  37. 37.
    Le Fevre, P. G.: Sugar transport in the red blood cell: Structure-activity relationships in substrates and antagonists. Pharmacol. Rev.13, 39–70 (1961).Google Scholar
  38. 38.
    Lineweaver, H., Burk, D.: The determination of enzyme dissociation constants. J. Amer. chem. Soc.56, 658 (1934).Google Scholar
  39. 39.
    Loeschke, K., Baumann, K.: Kinetische Studien derd-Glucoseresorption im proximalen Konvolut der Rattenniere. Pflügers Arch.305, 139–154 (1969).Google Scholar
  40. 40.
    —— Renschler, H., Ullrich, K. J., Fuchs, G.: Differenzierung zwischen aktiver und passiver Komponente desd-Glucosetransports am proximalen Konvolut der Rattenniere. Pflügers Arch.305, 118–138 (1969).Google Scholar
  41. 41.
    Lotspeich, W. D.: Metabolic aspects of renal function. Springfield, Ill.: Ch. C. Thomas 1959.Google Scholar
  42. 42.
    Lowry, O. H., Roberts, N. R., Chang, M. L. W.: The analysis of single cells. J. biol. Chem.222, 97–107 (1956).Google Scholar
  43. 43.
    Morgan, H. E., Park, C. R.: The effect of insulin, alloxan diabetes, and phlorhidzin on sugar transport across the muscle cell membrane. J. clin. Invest.36, 916 (1957).Google Scholar
  44. 44.
    Neale, R. J., Wisemann, G.: Active intestinal absorption ofl-Glucose. Nature (Lond.)218, 473–474 (1968).Google Scholar
  45. 45.
    Newey, H., Parson, B. J., Smyth, D. H.: The site of action of phlorizin in inhibiting intestinal absorption of glucose. J. Physiol. (Lond.)148, 83–92 (1959).Google Scholar
  46. 46.
    Ponz, F., Lluch, M.: Coupling of cell metabolism and active transport in glucose absorption by the intestine. Rev. esp. Fisiol.11, 267–276 (1955).Google Scholar
  47. 47.
    Riklis, E., Quastel, J. H.: Effects of cations on sugar absorption by isolated surviving guinea pig intestine. Canad. J. Biochem. Physiol.36, 347–362 (1958).Google Scholar
  48. 48.
    Ruedas, G., Weiss, Ch.: Die Wirkung von Änderungen der Natriumkonzentration im Perfusionsmedium und von Strophanthin auf die Glucoseresorption der isolierten Rattenniere. Pflügers Arch. ges. Physiol.298, 12–22 (1967).Google Scholar
  49. 49.
    Schultz, S. G., Zalusky, R.: Ion transport in isolated rabbit ileum II. The interaction between active sodium and active sugar transport. J. gen. Physiol.47, 1043–1059 (1964).Google Scholar
  50. 50.
    Semenza, G.: In search of molecular mechanisms in intestinal sugar transport. (Abstract) Enzymol. biol. clin.10, 323–324 (1969).Google Scholar
  51. 51.
    Shannon, J. A., Fisher, S.: The renal tubular reabsorption of glucose in the normal dog. Amer. J. Physiol.122, 765–774 (1938).Google Scholar
  52. 52.
    Silverman, M., Aganon, M. A., Chinard, F. P.: Specificity of monosaccharide transport in dog kidney. Amer. J. Physiol.218, 743–750 (1970).Google Scholar
  53. 53.
    Stirling, C. E.: High-resolution radioautography of phlorinzin-3H in rings of hamster intestine. J. Cell Biol.35, 605–618 (1967).Google Scholar
  54. 54.
    Vogel, G., Kröger, W.: Die Bedeutung des Transportes, der Konzentration und der Darbietungsrichtung von Na+ für den tubulären Glucose- und PAH-Transport. Pflügers Arch. ges. Physiol.288, 342–358 (1966).Google Scholar
  55. 55.
    —, Lauterbach, F., Kröger, W.: Die Bedeutung des Natriums für die renalen Transporte von Glucose und Para-Aminohippursäure. Pflügers Arch. ges. Physiol.283, 151–159 (1965).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • W. Frasch
    • 1
  • P. P. Frohnert
    • 1
  • F. Bode
    • 1
  • K. Baumann
    • 1
  • R. Kinne
    • 1
  1. 1.Max-Planck-Institut für BiophysikFrankfurt a. M.-70

Personalised recommendations