Skip to main content
Log in

The force-frequency relationship: A comparative study between warm- and cold-blooded animals

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

In a comparative study, the mechanical and electrical responses of the guinea pig's papillary muscles and strips of the turtle's and frog's ventricles to various stimulation patterns were investigated. Typical forcefrequency relationships were found to be present in all preparations. It is, however, much more pronounced in the guinea pig's heart than in the other preparations. Striking differences exist between the warm-blooded and the cold-blooded animals, as far as “pure frequency potentiation” is concerned, i.e., the frequency dependence of the maximal actively developed force after a certain resting period (test-interval) following a series of conditioning rhythmical stimuli. Whereas in the guinea pig's papillary muscle the amplitude of optimal test contraction increases with the frequency of foregoing stimuli, the amplitude is depressed in the cold-blooded preparations by a rise of frequency. This effect is found to be due to the shortening of the action potential. Thus the mechanical response of cold-blooded preparations seems to depend primarily on the duration of depolarization under different conditions of stimulation. In the guinea pig's papillary muscle, the same changes in the time course of depolarization can be observed, but their effect on the contractile force cannot be revealed in such experiments. A much more predominant role in the force development of a papillary muscle may be attributed to the immediate influence of frequency on the contractile mechanism, i.e. to the pure frequency potentiation which does not exist in the myocardium of cold-blooded animals. These differences may be explained by the different development of Ca++ stores of the sarcoplasmic reticulum in heart muscle of cold- and warm-blooded animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antoni, H., Jacob, R., Kaufmann, R.: Mechanische Reaktionen des Frosch- und Säugetiermyokards bei Veränderung der Aktionspotential-Dauer durch konstante Gleichstromimpulse. Pflügers Arch.306, 33–57 (1969).

    Google Scholar 

  • —, Rotmann, M.: Zum Mechanismus der negativ inotropen Acetylcholin-Wirkung auf das isolierte Froschmyokard. Pflügers Arch. ges. Physiol.300, 67–68 (1968).

    Google Scholar 

  • Bleichert, A., Reichel, H.: Die Hemmung der Erschlaffung beim Herzmuskel des Kalt- und Warmblüters. Pflügers Arch. ges. Physiol.276, 242–249 (1962).

    Google Scholar 

  • Carsten, M. E.: Cardiac sarcotubular vesicles: effects of ions, ouabain and acetylstrophantidin. Circulat. Res.20, 599–605 (1967).

    Google Scholar 

  • Edmands, R. E., Greenspan, K., Fisch, Ch.: Electrophysiological correlates of contractile change in mammalian and amphibian myocardium. Cardiovasc. Res.3, 252–260 (1968).

    Google Scholar 

  • Hasselbach, W., Makinose, M.: Die Calciumpumpe der “Erschlaffungsgrana” des Muskels und ihre Abhängigkeit von der ATP-Spaltung. Biochem. Z.333, 518–528 (1961).

    Google Scholar 

  • Heintzen, P., Kraft, H. G., Wiegmann, O.: Über die elektrische und mechanische Tätigkeit des Herzstreifenpräparats vom Frosch in Abhängigkeit von der Temperatur. Z. Biol.108, 401–411 (1956).

    Google Scholar 

  • Kavaler, F.: Membrane depolarization as a cause of tension development in mammalian ventricular muscle. Amer. J. Physiol.197, 968–970 (1959).

    Google Scholar 

  • Kedem, J., Mahler, Y., Rogel, S.: The effect of heart rate on myocardial contractility during single and paired pulse stimulation “in vivo”. Arch. int. Physiol. Biochem.77, 880–892 (1969).

    Google Scholar 

  • Koch-Weser, J., Blinks, J. R.: The influence of the interval between beats on myocardial contractility. Pharmacol. Rev.15, 601–652 (1963).

    Google Scholar 

  • Kruta, V., Braveny, P.: Restitution de la contractilité du myocarde entre les contractions et phénomènes de potentiation. Arch. int. Physiol.69, 645–667 (1961).

    Google Scholar 

  • ——: Rate of restitution and self-regulation of contractility in mammalian heart muscle. Nature (Lond.)197, 905–906 (1963).

    Google Scholar 

  • Niedergerke, R.: The staircase-phenomen and the action of calcium on the heart. J. Physiol. (Lond.)134, 569–583 (1956).

    Google Scholar 

  • Palmer, R. F., Posey, V. A.: Ion effects on calcium accumulation by cardiac sarcoplasmic reticulum. J. gen. Physiol.50, 2085–2095 (1967).

    Google Scholar 

  • Reichel, H., Bleichert, A.: Excitation—contraction coupling in heart muscle. Nature (Lond.)183, 826–827 (1959).

    Google Scholar 

  • Reiter, M., Stickel, F. J.: Der Einfluß der Kontraktionsfrequenz auf das Aktionspotential des Meerschweinchen-Papillarmuskels. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path.260, 342–365 (1968).

    Google Scholar 

  • Rogel, S., Mahler, Y.: Consumption and cumulation of the inotropic effect of depolarization. Israel J. med. Sci.6, 90–102 (1970).

    Google Scholar 

  • Rumberger, E.: Über Korrelationen zwischen der Aktionspotentialdauer und dem zeitlichen Verlauf der Erschlaffung beim Herzmuskel des Warm- und Kaltblüters. Pflügers Arch. ges. Physiol.301, 70–75 (1968).

    Google Scholar 

  • —: Der Zeitverlauf der Kontraktionsfähigkeit des Herzmuskels nach plötzlichen Entdehnungen während der isometrischen Kontraktion in Abhängigkeit von der Reizfrequenz. Pflügers Arch.318, 353–365 (1970).

    Google Scholar 

  • —, Retzlaff, E., Reichel, H.: Beitrag zur Frequenz-Potenzierung des Papillarmuskels vom Meerschweinchenherzen. Pflügers Arch.316, R8 (1970).

    Google Scholar 

  • Sano, T., Suzuki, F., Sato, S.: Mechanism of inotropic action of catecholamines and ouabain in cardiac muscle in relation to changes of action potential. Jap. Heart J.11, 269–290 (1970).

    Google Scholar 

  • Schaefer, J., Reichel, H., Schwarzkopf, H. J., Rumberger, E., Nordmann, K. J., Sedlmeyer, I., Bleichert, A.: Untersuchungen zur Kraft-Frequenz-Beziehung des menschlichen Herzens. Verh. dtsch. Ges. Kreisl.-Forsch.37, 356–359 (1971).

    Google Scholar 

  • Simpson, F. O., Dertelis, S. J.: The fine structure of sheep myocardial cells; sarcolemmal invaginations and the transverse tubular system. J. Cell Biol.12, 91–100 (1962).

    Google Scholar 

  • Sommer, J. R., Johnson, E. A.: Cardiac muscle. A comparative ultrastructural study with special reference to frog and chicken hearts. Z. Zellforsch.98, 437–468 (1969).

    Google Scholar 

  • Sopis, J. A., Langer, G. A.: Calcium kinetics in frog heart. J. molec. Cell. Card.1, 291–305 (1970).

    Google Scholar 

  • Staley, N. A., Benson, E. S.: The ultrastructure of frog ventricular cardiac muscle and its relationship to mechanisms of excitation-contraction coupling. J. Cell Biol.38, 99–114 (1968).

    Google Scholar 

  • Wiegmann, O., Kraft, H. G., Küper, J.: Der Einfluß der Schlagfrequenz auf Aktionspotentiale und Mechanogramme des Herzstreifens in verschiedenen Temperaturbereichen. Z. Biol.109, 270–280 (1957).

    Google Scholar 

  • Wood, E. H., Heppner, R. L., Weidmann, S.: Inotropic effects of electric currents. Circulat. Res.24, 409–445 (1969).

    Google Scholar 

  • Woodworth, R. S.: Maximal contraction “staircase” contraction refractory period and compensatory pause on the heart. Amer. J. Physiol.8, 213–249 (1902).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rumberger, E., Reichel, H. The force-frequency relationship: A comparative study between warm- and cold-blooded animals. Pflugers Arch. 332, 206–217 (1972). https://doi.org/10.1007/BF00587448

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00587448

Key words

Navigation