Pflügers Archiv

, Volume 344, Issue 1, pp 75–82 | Cite as

Alteration of EEG activity of the hypothalamus by thermal stimulation of the spinal cord

  • W. Wünnenberg


EEG activity of various parts of the hypothalamus was recorded in unanaesthetized guinea pigs during thermal stimulation of the spinal cord. In the anterior hypothalamus fast waves became more prominent when the spinal cord temperature (T sc ) was raised from 40° to 42° C, resulting in an increase of the mean frequency by about 50%. The electrical activity remained unaffected whenT sc was raised from 38° to 40° C. In the posterior hypothalamus, spinal cord heating from 39.5° to 42° C led to a decrease of the mean frequency by about 30%, while temperature changes from 38° to 39.5° C were less effective.

Corresponding studies in cold-adapted animals showed that the EEG response to spinal cord heating is modified by thermal adaptation. In this group of animals electrical activity of the posterior hypothalamus could be influenced clearly by heating the spinal cord from 38° to 39.5° C, while a temperature change in this range was nearly ineffective in animals reared at 20° C.

Key words

Temperature Regulation Spinal Thermosensitive Structures Hypothalamus EEG Cold Adaptation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brück, K., Wünnenberg, W.: Beziehung zwischen Thermogenese im “braunen” Fettgewebe, Temperatur im cervicalen Anteil des Vertebralkanals und Kältezittern. Pflügers Arch. ges. Physiol.290, 167–183 (1966)Google Scholar
  2. 2.
    Brück, K., Wünnenberg, W.: Eine kälteadaptive Modifikation: Senkung der Schwellentemperaturen für Kältezittern. Pflügers Arch. ges. Physiol.293, 226–235 (1967)Google Scholar
  3. 3.
    Brück, K., Wünnenberg, W., Gallmeier, H., Ziehm, B.: A mode of thermal adaptation: Shift of threshold temperatures for shivering and heat polypnea. J. Physiol. (Paris)63, 213–215 (1971)Google Scholar
  4. 4.
    Edinger, H. M., Eisenman, J. S.: Thermosensitive neurons in tuberal and posterior hypothalamus of cats. Amer. J. Physiol.219, 1098–1103 (1970)Google Scholar
  5. 5.
    Euler, C. von, Söderberg, U.: The influence of hypothalamic thermoceptive structures on the electroencephalogram and gamma motor activity. Electroenceph. clin. Neurophysiol.9, 391–408 (1957)Google Scholar
  6. 6.
    Guieu, J. D., Hardy, J. D.: Effects of heating and cooling of the spinal cord on preoptic unit activity. J. appl. Physiol.29, 675–683 (1970)Google Scholar
  7. 7.
    Hardy, J. D., Guieu, J. D.: Integrative activity of preoptic units II: Hypothetical network. J. Physiol. (Paris)63, 254–267 (1971)Google Scholar
  8. 8.
    Herrmann, H. J.: Die Wärmetachypnoe des Meerschweinschens in Abhängigkeit von der Temperatur des vorderen Hypothalamus, des Cervicalmarks, des Lumbalmarks und der Körperoberfläche. Inaug.-Diss., Gießen 1972Google Scholar
  9. 9.
    Horsten, G. P. M.: The electrical activity of the hypothalamus in relation to body temperature. Acta physiol. pharmacol. neerl.1, 344–346 (1950)Google Scholar
  10. 10.
    Kawakami, M., Seto, K., Negoro, H., Yamaoka, S., Mohri, M.: Participation of the limbic-hypothalamic structures in cold adaptation. In: Advances in climatic physiology. Eds. S. Itoh, K. Ogata, and H. Yoshimura. Tokyo: Igaku Shoin Ltd.; Berlin-Heidelberg-New York: Springer 1972Google Scholar
  11. 11.
    Kosaka, M., Simon, E., Thauer, R., Walther, O.-E.: Effect of thermal stimulation of spinal cord on respiration and cortical activity. Amer. J. Physiol.217, 858–863 (1969)Google Scholar
  12. 12.
    Nutik, S. L.: Effect of temperature of the preoptic region and skin on posterior hypothalamic neurous. J. Physiol. (Paris)63, 568–570 (1971)Google Scholar
  13. 13.
    Okuma, T., Fujimori, M., Hayashi, A.: The effect of environmental temperature on the electrocortical activity of cats immobilized by neuromuscular blocking agents. Electorenceph. clin. Neurophysiol.18, 392–400 (1965)Google Scholar
  14. 14.
    Takatani, O., Uechi, M., Nakamura, Y.: Electroencephalograms from neocortex and limbic system during temperature regulating responses of the rabbit. Exp. Neurol.18, 392–403 (1967)Google Scholar
  15. 15.
    Ten Cate, J., Horsten, G. P. M., Koopman, L. J.: The influence of the body temperature on the EEG of the rat. Electroenceph. clin. Neurophysiol.1, 231–235 (1949)Google Scholar
  16. 16.
    Tindal, J. S.: The forebrain of the guinea pig in stereotaxic coordinates. J. comp. Neurol.124, 259–266 (1965)Google Scholar
  17. 17.
    Tönnies, J. F.: Automatische EEG-Intervali-Spektrumanalyse (EISA) zur Langzeitdarstellung der Schlafperiodik und Narkose. Arch. Psychiat. Nervenkr.212, 423–445 (1969)Google Scholar
  18. 18.
    Wit, A., Wang, S. C.: Temperature-sensitive neurons in preoptic/anterior hypothalamic region: effects of increasing temperature. Amer. J. Physiol.215, 1151–1159 (1968)Google Scholar
  19. 19.
    Wünnenberg, W., Brück, K.: Studies on the ascending pathways from the thermosensitive region of the spinal cord. Pflügers Arch.321, 233–241 (1970)Google Scholar
  20. 20.
    Wünnenberg, W., Hardy, J. D.: Response of single units of the posterior hypothalamus to thermal stimulation. J. appl. Physiol.33, 547–552 (1972)Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • W. Wünnenberg
    • 1
  1. 1.Physiologisches Institut der Justus-Liebig-UniversitätGiessenGermany

Personalised recommendations