Skip to main content
Log in

Electrical properties of the medullary collecting ducts of the golden hamster kidney

II. The transepithelial resistance

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

The electrical resistance of collecting duct epithelium of the hamster kidney was measured in situ during luminal perfusion of the duct lumen with 0.3 molar NaCl solution. Three different approaches were used: 1. Determination of the voltage attenuation along an unbranched duct segment of the open collecting duct system. 2. Determination of the input resistance of the entire collecting duct tree and 3. determination of the input resistance of short unbranched duct segments, which were terminated at their upper and lower ends with insulating resin. Using models of bifurcating cable systems, described in the appendix, the specific membrane resistanceR m was calculated from experiment 1 and 2 to be 2 kΩ cm2, while experiment 3, after correction for leaks, yielded a value of approximately 1 kΩ cm2. The data confirm that collecting duct transepithelial resistance is one or two orders of magnitude higher than the resistance of distal and proximal tubule, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baldamus, C. A., Hierholzer, K., Rumrich, G., Stolte, H., Uhlich, E., Ullrich, K. J., Wiederholt, M.: Natriumtransport in den proximalen Tubuli und in den Sammelrohren bei Variation der Natriumkonzentration im umgebenden Medium. Pflügers Arch.310, 354–368 (1969)

    Google Scholar 

  2. Berkinblit, M. B., Kovalev, S. A., Smolyaninov, V. V., Chailakhyan, L. M.: Input resistance of syncytial structures. Biophysics10, 341–351 (1965)

    Google Scholar 

  3. Coraboeuf, E.: Resistance measurements by means of microelectrodes in cardiac tissues. In: Glass microelectrodes. M. Lavallée, O. F. Schanne, and N. C. Hébert, eds., pp. 224–271. New York-London: Wiley 1969

    Google Scholar 

  4. Fatt, P., Katz, B.: The electrical properties of Crustacean muscle fibers. J. Physiol. (Lond.)120, 171–204 (1953)

    Google Scholar 

  5. Feldtkeller, R.: Einführung in die Vierpoltheorie der elektrischen Nachrichtentechnik. Stuttgart: Hirzel 1953

    Google Scholar 

  6. Frömter, E., Diamond, J. M.: Route of passive ion permeation in epithelia. Nature New Biol.235, 9–13 (1972)

    Google Scholar 

  7. Frömter, E., Rumrich, G., Ullrich, K. J.: Phenomenologic description of Na+, Cl and HCO3 absorption from proximal tubules of the rat kidney. Pflügers Arch.343, 189–220 (1973)

    Google Scholar 

  8. George, E. P.: Resistance values in a syncytium. Aust. J. exp. Biol. med. Sci.39, 267–274 (1961)

    Google Scholar 

  9. Gruber, W. D., Knauf, H., Frömter, E.: The action of aldosterone on Na+ and K+-transport in the rat submaxillary main duct. Pflügers Arch.344, 33–49 (1973)

    Google Scholar 

  10. Hegel, U., Frömter, E., Wick, T.: Der elektrische Wandwiderstand des proximalen Konvolutes der Rattenniere. Pflügers Arch. ges. Physiol.294, 274–290 (1967)

    Google Scholar 

  11. Helman, S. I., Grantham, J. J., Burg, M. B.: Effect of vasopressin on electrical resistance of renal cortical collecting tubules. Amer. J. Physiol.220, 1825–1832 (1971)

    Google Scholar 

  12. Johnson, E. A., Sommer, J. R.: A strand of cardiac muscle. Its ultrastructure and the electrophysiological implications of its geometry. J. Cell Biol.33, 103–129 (1967)

    Google Scholar 

  13. Loewenstein, W. R., Kanno, Y.: Studies on an epithelial (gland) cell junction. I. Modifications of surface membrane permeability. J. Cell Biol.22, 565–586 (1964)

    Google Scholar 

  14. Malnic, G., Giebisch, G.: Some electrical properties of distal tubular epithelium in the rat. Amer. J. Physiol.223, 797–808 (1972)

    Google Scholar 

  15. Rau, W. S., Frömter, E.: Electrical properties of the medullary collecting ducts of the golden hamster kidney. I. The transepithelial potential difference. Pflügers Alch.351, 99–111 (1974)

    Google Scholar 

  16. Steinhausen, M.: In vivo-Beobachtungen an der Nierenpapille von Goldhamstern nach intravenöser Lissamingrün-Injektion. Pflügers Arch. ges. Physiol.279, 195–213 (1964)

    Google Scholar 

  17. Taylor, R. E.: Cable theory. In: Physical techniques in biological research, W. L. Nastuk, Ed. New York: Academic Press 1963

    Google Scholar 

  18. Timmermans, J.: The physico-chemical constants of binary systems in concentrated solutions, Vol. 3, p. 335. New York: Interscience Publ. 1960

    Google Scholar 

  19. Uhlich, E., Halbach, R., Ullrich, K. J.: Einfluß von Aldosteron auf den Ausstrom markierten Natriums aus den Sammelrohren der Ratte. Pflügers Arch.320, 261–264 (1970)

    Google Scholar 

  20. Ussing, H. H.: The alkali metal ions in isolated systems and tissues. In: Handbuch der experimentellen Pharmakologie, O. Eichler u. E. Farah, Hrsg., pp. 1–195. Berlin-Heidelberg-New York: Springer 1960

    Google Scholar 

  21. Walser, M.: Role of edge damage in sodium permeability of toad bladder and a means of avoiding it. Amer. J. Physiol.219, 252–255 (1970)

    Google Scholar 

  22. Weber, H.: Über die stationären Strömungen der Electricität in Cylindern. Borchardts J. Math.76, 1–20 (1873)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rau, W.S., Frömter, E. Electrical properties of the medullary collecting ducts of the golden hamster kidney. Pflugers Arch. 351, 113–131 (1974). https://doi.org/10.1007/BF00587431

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00587431

Key words

Navigation