Pflügers Archiv

, Volume 363, Issue 1, pp 43–48 | Cite as

Ionic mechanisms associated with the depolarization by glutamate and aspartate on human and rat spinal neurones in tissue culture

  • L. Hösli
  • P. F. Andrès
  • Elisabeth Hösli
Article

Summary

The action of glutamate and aspartate was studied on the membrane potential of human and rat spinal neurones in tissue culture. Both amino acids caused a depolarization of the cell membrane, the size of which was dependent on the concentration of the amino acids in the bathing fluid. In order to study ionic mechanisms associated with the amino acid depolarization, the ionic composition of the extracellular fluid was altered. Removal of sodium ions from the bathing solution reversibly reduced or abolished the depolarization produced by glutamate and aspartate suggesting that the action of these amino acids is associated with an increased sodium permeability. Substituting lithium for sodium ions also reversibly abolished the depolarization by glutamate indicating that in contrast to the effect of lithium on the action potential, this ion cannot replace sodium for the glutamate depolarization. These experiments show that the method of tissue culture is a suitable model to study ionic mechanisms underlying the action of neurotransmitters in the mammalian and especially in the human CNS.

Key words

Ionic mechanisms Amino acid depolarization CNS tissue culture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrès, P. F., Hösli, L.: Eine Perfusionskammer für in vitro Versuche unter mikroskopischer Kontrolle. Microscop. Acta73, 38–44 (1972)Google Scholar
  2. 2.
    Anwyl, R., Usherwood, P. N. R.: Voltage clamp studies of glutamate synapse. Nature (Lond.)252, 591–592 (1972)Google Scholar
  3. 3.
    Armett, C. J., Ritchie, J. M.: On the permeability of mammalian non-myelinated fibres to sodium and to lithium ions. J. Physiol. (Lond.)165, 130–140 (1963)Google Scholar
  4. 4.
    Balcar, V. J., Johnston, G. A. R.: High affinity uptake of transmitters: Studies on the uptake ofl-aspartate, GABA,l-glutamate and glycine in cat spinal cord. J. Neurochem.20, 529–539 (1973)Google Scholar
  5. 5.
    Barker, J. L., Nicoll, R. A.: The pharmacology and ionic dependency of amino acid responses in the frog spinal cord. J. Physiol. (Lond.)228, 259–277 (1973)Google Scholar
  6. 6.
    Bernardi, G., Zieglgänsberger, W., Herz, A., Puil, E. A.: Intracellular studies on the action ofl-glutamic acid on spinal neurones of the cat. Brain Res.39, 523–525 (1972)Google Scholar
  7. 7.
    Bornstein, M. B., Murray, M. R.: Serial observations on patterns of growth, myelin formation, maintenance and degeneration in cultures of new-born rat and kitten cerebellum. J. biophys. biochem. Cytol.4, 499–504 (1958)Google Scholar
  8. 8.
    Curtis, D. R., Johnston, G. A. R.: Amino acid transmitters in the mammalian central nervous system. In: Reviews of physiology, pp. 97–188. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  9. 9.
    Curtis, D. R., Phillis, J. W., Watkins, J. C.: The chemical excitation of spinal neurones by certain acidic amino acids. J. Physiol. (Lond.)150, 656–682 (1960)Google Scholar
  10. 10.
    Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., Tebēcis, A. K., Watkins, J. C.: Excitation of mammalian central neurones by acidic amino acids. Brain Res.41, 283–301 (1972)Google Scholar
  11. 11.
    Davidoff, R. A., Graham, L. T., Jr., Shank, R. P., Werman, R., Aprison, M. H.: Changes in amino acid concentrations associated with loss of spinal interneurons. J. Neurochem.14, 1025–1031 (1967)Google Scholar
  12. 12.
    Duggan, A. W.: The differential sensitivity tol-glutamate andl-aspartate of spinal interneurones and Renshaw cells. Exp. Brain Res.19, 522–528 (1974)Google Scholar
  13. 13.
    Duggan, A. W., Johnston, G. A. R.: Glutamate and related amino acids in cat spinal roots, dorsal root ganglia and peripheral nerves. J. Neurochem.17, 1205–1208 (1970)Google Scholar
  14. 14.
    Eccles, J. C.: The physiology of synapses, pp. 316. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  15. 15.
    Florey, E., Murdock, L. L.: The ionic mechanism of action of GABA andl-glutamate on a crustancean striated muscle (vas deferens of the crayfish). Comp. gen. Pharmacol.5, 91–99 (1974)Google Scholar
  16. 16.
    Gerschenfeld, H. M., Lasansky, A.: Action of glutamic acid and other naturally occuring amino-acids on snail central neurons. Int. J. Neuropharmacol.3, 301–314 (1964)Google Scholar
  17. 17.
    Graham, L. T., Jr., Shank, R. P., Werman, R., Aprison, M. H.: Distribution of some synaptic transmitter suspects in cat spinal cord: Glutamic acid, aspartic acid, γ-aminobutyric acid, glycine, and glutamine. J. Neurochem.14, 465–472 (1967)Google Scholar
  18. 18.
    Guillery R. W., Sobkowicz, H. M., Scott, G. L.: Relationships between glial and neuronal elements in the development of long term cultures of the spinal cord of the fetal mouse. J. comp. Neurol.140, 1–34 (1970)Google Scholar
  19. 19.
    Hösli, E., Hösli, L.: Acetylcholinesterase in cultured rat spinal cord. Brain Res.30, 193–197 (1971)Google Scholar
  20. 20.
    Hösli, L., Andrès, P. F., Hösli, E.: Effects of potassium on the membrane potential of spinal neurones in tissue culture. Pflügers Arch.333, 362–365 (1972)Google Scholar
  21. 21.
    Hösli, L., Andrès, P. F., Hösli, E.: Ionic mechanisms underlying the depolarization ofl-glutamate on rat and human spinal neurones in tissue culture. Experientia (Basel)29 1244–1247 (1973a)Google Scholar
  22. 22.
    Hösli, L., Hösli, E., Andrès, P. F.: Nervous tissue culture—a model to study action and uptake of putative neurotransmitters such as amino acids. Brain Res.62, 597–602 (1973b)Google Scholar
  23. 23.
    Hösli, L., Hösli, E., Andrès, P. F.: Electrophysiological and histochemical properties of fetal human spinal cord in tissue culture. In: Dynamics of degeneration and growth in neurons, pp. 521–532. (K. Fuxe, L. Olson, and Y. Zottermann, eds.), Oxford-New York: Pergamon Press 1974Google Scholar
  24. 24.
    Hösli, L., Hösli, E., Andrès, P. F., Wolff, J. R.: Amino acid transmitters—action and uptake in neurones and glial cells of human rat CNS tissue cultures. In: Golgi Centennial Symposium: Perspectives in neurobiology (M. Santini, ed.), pp. 473–488. New York: Raven Press 1975Google Scholar
  25. 25.
    Huxley, A. F., Stämpfli, R.: Effect of potassium and sodium on resting and action potentials of single myelinated nerve fibres. J. Physiol. (Lond.)112, 496–508 (1951)Google Scholar
  26. 26.
    Johnson, J. L.: Glutamic acid as a synaptic transmitter in the nervous system. A review. Brain Res.37, 1–19 (1972)Google Scholar
  27. 27.
    Johnston, G. A. R., Curtis, D. R., Davies, J., McCulloch, R. M.: Spinal interneurones excitation by conformationally restricted analogues ofl-glutamic acid. Nature (Lond.)248, 804–805 (1974)Google Scholar
  28. 28.
    Keynes, R. D., Swan, R. C.: The permeability of frog muscle fibres to lithium ions. J. Physiol. (Lond.)147, 626–638 (1959)Google Scholar
  29. 29.
    Krnjević, K., Phillis, J. W.: Iontophoretic studies of neurones in the mammalian cerebral cortex. J. Physiol. (Lond.)165, 274–304 (1963)Google Scholar
  30. 30.
    Loewenstein, W. R., Terzuolo, C. A., Washizu, Y.: Separation of transducer and impulse-generating processes in sensory receptors. Science142, 1180–1181 (1963)Google Scholar
  31. 31.
    Logan, W. J., Snyder, S. H.: High affinity uptake systems for glycine, glutamic and aspartic acids in synaptosomes of rat central nervous tissues. Brain Res.42, 413–431 (1972)Google Scholar
  32. 32.
    Ozeki, M., Grundfest, H.: Crayfish muscle fibre: Ionic requirements for depolarizing synaptic electrogenesis. Science155, 478–481 (1967)Google Scholar
  33. 33.
    Takeuchi, A., Onodera, K.: Reversal potentials of the excitatory transmitter andl-glutamate at the crayfish neuromuscular junction. Nature New Biol.242, 124–126 (1973)Google Scholar
  34. 34.
    Takeuchi, A., Takeuchi, N.: The effect on crayfish muscle of iontophoretically applied glutamate. J. Physiol. (Lond.)170, 296–317 (1964)Google Scholar
  35. 35.
    Tasaki, I., Polley, E. H., Orrego, F.: Action potentials from individual elements in cat geniculate and striate cortex. J. Neurophysiol.17, 454–474 (1954)Google Scholar
  36. 36.
    Zieglgänsberger, W., Puil, E. A.: Tetrodotoxin interference of CNS excitation by glutamic acid. Nature New Biol.239, 204–205 (1972)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • L. Hösli
    • 1
  • P. F. Andrès
    • 1
  • Elisabeth Hösli
    • 1
  1. 1.Physiologisches Institut der Universität BaselBaselSwitzerland

Personalised recommendations