Advertisement

Pflügers Archiv

, Volume 359, Issue 3, pp 231–251 | Cite as

Determination of diffusivity of oxygen and carbon dioxide in respiring tissue: Results in rat skeletal muscle

  • Takeo Kawashiro
  • Walter Nüsse
  • Peter Scheid
Article

Summary

Gas transfer rates for O2 and CO2 through freshly excised respiring rat abdominal muscle were measured. The tissue separated as a thin membrane two chambers, one of which was ventilated with a constant gas mixture. The other chamber was closed and the time course of changes ofPO2andPCO2, initially set at varied levels, was followed by electrodes. A plot of rate of change ofPO2 andPCO2 in the closed chamber against the partial pressure difference across the tissue yielded both Krogh's diffusion constant,KO2 andKCO2, and metabolic rate of tissue, i. e. specific O2 consumption and CO2 production,\(\dot m_{{\text{O}}_{\text{2}} } \) and\(\dot m_{{\text{CO}}_{\text{2}} } \).

The mean values at 37°C,KO2=1.31×10−9 mMol·cm−1·min−1·torr−1 andKCO2=28.0×10−9 mMol·cm−1·min−1·torr−1, did not differ significantly from values determined by other authors in various tissue preparations in which metabolism had been suppressed. Average O2 consumption,\(\dot m_{{\text{O}}_{\text{2}} } \), was not different from the values obtained in the same tissue by the Warbung manometric method, 0.74 mMol·min−1·L−1. The mean respiratory quotient, calculated as the ratio of mean CO2 production and mean O2 consumption, was 0.85.

Key words

CriticalPO2 Diffusion O2 and CO2 Muscle O2 Consumption Partial Pressure Profiles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker, S. B., Klitgaard, H. M.: Metabolism of tissues excised from thyroxine-injected rats. Amer. J. Physiol.170, 81–86 (1952).Google Scholar
  2. Barker, S. B., Schwartz, H. S.: Further studies on metabolism of tissues from thyroxine-injected rats. Proc. Soc. exp. Biol. (N.Y.)83, 500–502 (1953)Google Scholar
  3. Bartels, H.: Diffusion coefficients and Krogh's diffusion constants. In: Respiration and Circulation, ed. byP. L. Altman and D. S. Dittmer, Bethesda: Federation of the American Societies for Experimental Biology (1971)Google Scholar
  4. Borrow, A., Penney, J. R.: Further observations on biological reactions by the Cartesian Diver technique—with special reference to mammalian tissue. Exp. Cell Res.2, 188–206 (1951)Google Scholar
  5. Farr, D. A., Fuhrman, F. A.: Role of diffusion of oxygen in the respiration of tissues at different temperatures. J. appl. Physiol.20, 637–646 (1965).Google Scholar
  6. Ganfield, R. A., Nair, P., Whalen, W. J.: Mass transfer, storage, and utilization of O2 in cat cerebral cortex. Amer. J. Physiol.219, 814–821 (1970)Google Scholar
  7. Gros, G.: Die freie und erleichterte Diffusion von Kohlendioxid in Erythrozyten und Hämoglobinlösungen. Dissertation, Universität Tübingen (1969)Google Scholar
  8. Gros, G., Moll, W.: The diffusion of carbon dioxide in erythrocytes and hemoglobin solutions. Pflügers Arch.324, 249–266 (1971)Google Scholar
  9. Grote, J.: Die Sauerstoffdiffusionskonstanten im Lungengewebe und Wasser und ihre Temperaturabhängigkeit. Pflügers Arch. ges. Physiol.295, 245–254 (1967)Google Scholar
  10. Grote, J., Thews, G.: Die Bedingungen für die Sauerstoffdiffusion des Herzmuskelgewebes. Pflügers Arch. ges. Physiol.276, 142–165 (1962)Google Scholar
  11. Hollinger, N.: Studies on the influence of temperature on certain aspects of metabolism in isolated mammalian skeletal muscle and cerebral cortex. Dissertation, Stanford University 1944Google Scholar
  12. Houchin, O. B., Mattill, H. A.: The oxygen consumption, creatinine, and chloride content of muscles from vitaminE-deficient animals as influenced by feedinga-tocopherol. J. biol. Chem.146, 301–307 (1942)Google Scholar
  13. Kawashiro, T., Campos Carles, A., Perry, S. F., Piiper, J.: Diffusivity of various inert gases in rat skeletal muscle. Pflügers Arch359, 219–230 (1975)Google Scholar
  14. Jöbsis, F. F.: Basic processes in cellular respiration, pp. 63–124. In: Handbook of Physiology, Section 3, Vol. 1. Ed. by W. O. Fenn and H. Rahn. Washington, D.C.: Amer. Physiol. Soc. 1964Google Scholar
  15. Kreuzer, F.: Über die Diffusion von Sauerstoff in Serumeiweißlösungen verschiedener Konzentration. Helv. physiol. pharmacol. Acta8, 505–516 (1950)Google Scholar
  16. Kreuzer, F.: Facilitated diffusion of oxygen and its possible significance. Respir. Physiol.9, 1–30 (1970)Google Scholar
  17. Kreuzer, F., Hoofd, L. J. C.: Factors influencing facilitated diffusion of oxygen in the presence of hemoglobin and myoglobin. Respir. Physiol.15, 104–124 (1972)Google Scholar
  18. Kreuzer, F., Yahr, W. Z.: The influence of the red cell membrane on the diffusion of oxygen. J. appl. Physiol.15, 1117–1122 (1960)Google Scholar
  19. Krogh, A.: The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion. J. Physiol. (Lond.)52, 391–408 (1919)Google Scholar
  20. Kutchai, H., Staub, N. C.: Steady-state, hemoglobin-facilitated O2 transport in human erythrocytes. J. gen. Physiol.53, 576–589 (1969)Google Scholar
  21. Longmuir, I. S., Bourke, A.: The measurement of the diffusion of oxygen through respiring tissue. Biochem. J.76, 225–229 (1960)Google Scholar
  22. Moll, W.: The diffusion coefficient of myoglobin in muscle homogenate. Pflügers Arch. ges. Physiol.299, 247–251 (1968)Google Scholar
  23. Piiper, J., Dejours, P., Haab, P., Rahn, H.: Concepts and basic quantities in gas exchange physiology. Respir. Physiol.13, 292–304 (1971)Google Scholar
  24. Siesjö, B. K., Thews, G.: Ein Verfahren zur Bestimmung der CO2-Löslichkeit und des CO2-Diffusionskoeffizienten im Gehirngewebe. Pflügers Arch. ges. Physiol.276, 192–210 (1962)Google Scholar
  25. Spector, W. (ed.): Handbook of Biological Data, p. 72. Philadelphia-London: Saunders 1956Google Scholar
  26. Thews, G.: Ein Verfahren zur Bestimmung des O2-Diffusionskoeffizienten, der O2-Leitfähigkeit und des O2-Löslichkeitskoeffizienten im Gehirngewebe. Pflügers Arch. ges. Physiol.271, 227–244 (1960)Google Scholar
  27. Umbreit, W. W., Burris, R. H., Stauffer, J. F.: Manometric technique, a manual describing methods applicable to the study of tissue metabolism. Minnesota: Burgess 1964Google Scholar
  28. Van Liew, H. D.: Diffusion constant for CO2 through urinary bladders of cats. Respir. Physiol.13, 372–377 (1971)Google Scholar
  29. Visschedijk, P. J. B. J., Schultz, J. S., Kreuzer, F.: Determination of the diffusion coefficient of oxygen in respiring rat diaphragm. Proc. 15th Dutch Federation Meeting, p. 367 (1974)Google Scholar
  30. Warburg, O.: Versuche an überlebendem Carcinomgewebe. Biochem. Z.142, 317–333 (1923)Google Scholar
  31. Wittenberg, J. B.: Myoglobin-facilitated oxygen diffusion: role of myoglobin in oxgen entry into muscle. Physiol. Rev.50, 559–636 (1970)Google Scholar
  32. Wright, C. I.: The diffusion of carbon dioxide in tissues. J. gen. Physiol.17, 657–676 (1934)Google Scholar
  33. Wyman, J.: Facilitated diffusion and the possible role of myoglobin as a transport mechanism. J. biol. Chem.241, 115–121 (1966)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Takeo Kawashiro
    • 1
  • Walter Nüsse
    • 1
  • Peter Scheid
    • 1
  1. 1.Abteilung PhysiologieMax-Planck-Institut für experimentelle MedizinGöttingenFederal Republic of Germany

Personalised recommendations