Pflügers Archiv

, Volume 339, Issue 3, pp 257–264 | Cite as

Mitochondrial O2 uptake measurement using an electronic differentiator

  • André Dittmar
  • Jacques Forichon
Short Communications and Technical Notes


The article describes a system for the continuousin vitro mitochondrial O2 uptake measurement. This device employs a Clark-type polarographic polypropylene-corvered electrode. Four experimental parameters, set digitally from the front panel, enter into the calculation of results: 1. reaction-medium O2 concentration per ml, 2. reaction-medium volume, 3. initialpO2, and 4. mitochondrial protein content. Thus instantaneous and continuous recording ofpO2 and of O2 uptake is possible with a fixed scale for all experimental situations. An O2 uptake of 400n At O2/h·mg of mitochondrial protein would be expressed by one cm of recorder deflection. This is accomplished by an electronic differentiator with additional circuits for the introduction of parameter values. Moreover two values ofpO2 simulation (0 or 160 mm Hg) and two values of O2 uptake simulation are provided by an internal device to allow easy recorder calibration. The measurements are reproducible and the fixed scale allows easy comparison of several recordings.

Key words

Polarographic Determination of Mitochondrial Respiration Clark Electrode Respiratory Control Electronic Differentiator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chance, B.: Quantitative aspects of the control of oxygen utilization. CIBA foundation symposium on the regulation of cell metabolism, p. 92, London: Churchill 1959.Google Scholar
  2. 2.
    Chance, B., Williams, G. R.: Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J. biol. Chem.217, 383–393 (1955).Google Scholar
  3. 3.
    Chance, B., Williams, G. R.: The respiratory chain and oxidative phosphorylation. Advanc. Enzymol.17, 65–134 (1956).Google Scholar
  4. 4.
    Chapell, J. B., Crofts, A. R.: Calcium ion accumulation and volume changes of isolated liver mitochondria. Biochem. J.95, 378–386 (1965).Google Scholar
  5. 5.
    Estabrook, R. W.: Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios. In: S. P. Colowick and N. O. Kaplan: Methods in Enzymology (oxidation and phosphorylation), vol. 10, pp. 41–47. New-York-London: Academic Press 1967.Google Scholar
  6. 6.
    Hagihara, B.: Techniques for the application of polarography to mitochondrial respiration. Biochim. biophys. Acta (Amst.)46, 134–142 (1961).Google Scholar
  7. 7.
    Hittelman, K. J., Lindberg, O.: In brown adipose tissue, pp. 245–262. New-York-London-Amsterdam: Elsevier Publ. 1970.Google Scholar
  8. 8.
    Lindberg, O., Prusiner, S. B., Cannon, B., Ching, T. M., Eisenhardt, R. H.: Metabolic control in isolated brown fat cells. Lipids5, 204–209 (1970).Google Scholar
  9. 9.
    Longmuir, I. S.: Respiration rate of rat liver cells at low oxygen concentration. Biochem. J.65, 378–382 (1957).Google Scholar
  10. 10.
    Prusiner, S. B., Cannon, B., Lindberg, O.: Oxidative metabolism in cells isolated from brown adipose tissue, 1: catecholamine and fatty acid stimulation of respiration. Europ. J. Biochem.6, 15–22 (1968).Google Scholar
  11. 11.
    Prusiner, S. B., Eisenhardt, R. H., Rylander, E., Lindberg, O.: The regulation of oxidative metabolism of isolated brown fat cells. Biochem. biophys. Res. Commun.30, 508–515 (1968).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • André Dittmar
    • 1
  • Jacques Forichon
    • 1
  1. 1.Laboratoire de Thermorégulation (C.N.R.S.) Faculté de MédecineUniversité de LyonLyonFrance

Personalised recommendations