Advertisement

Pflügers Archiv

, Volume 341, Issue 2, pp 87–96 | Cite as

Membrane shot-noise in electrically depolarized nodes of Ranvier

  • E. Siebenga
  • A. W. A. Meyer
  • A. A. Verveen
Article

Summary

The power spectra of the spontaneous voltage fluctuations (membrane noise) of the node of Ranvier were measured in the frequency range from 0.3 to 1500 cycles per second at different levels of the membrane potential (−90 to +30 mV, inside negative). Up from about −30 mV the power spectrum shows a\(\frac{1}{{1 + \left( {2\pi f\tau } \right)^2 }}\) component, which increases with depolarization. This shot like noise component is independent of and occurs in addition to the 1/f component. The source of this shot like noise component is probably given by fluctuations in the conductance for potassium ions. With the use of a minimum parameter model which consists of channels that switch randomly in time from the closed to the open state and vice versa, independent of each other, the number of active channels per μm2 appears to be of the order of 1000. The elementary unit of the potassium system conductance is then of the order of 10−11S per channel1 and the mean frequency of switches per second per channels is about 160.

Key words

Membrane Voltage Noise Shot Noise Potassium Conductance Minimum Parameter Model Elementary Unit of Conductance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blair, E. A., Erlanger, J.: Responses of axons to brief shocks. Proc. Soc. exp. Biol. (N.Y.)29, 926–927 (1932).Google Scholar
  2. 2.
    Cole, K. S.: Membranes, Ions and Impulses. Berkeley-Los Angelos: University of California Press 1968.Google Scholar
  3. 3.
    DeFelice, L. J., Adair, J. R.: Electrical noise from single cells. Biophys. Soc. Abstr. (1973) (in press).Google Scholar
  4. 4.
    DeFelice, L. J., Michalides, J. P. L. M.: Electrical noise from synthetic membranes. J. Membrane Biol.9, 261–290 (1972).Google Scholar
  5. 5.
    Derksen, H. E.: Axon membrane voltage fluctuations. Acta physiol. pharmacol. neerl.13, 373–466 (1965).Google Scholar
  6. 6.
    Dodge, F. A.: A study of ionic permeability changes underlying excitation in myelinated nerve fibres of the frog. New York: The Rockefeller Institute 1963.Google Scholar
  7. 7.
    Fishman, H. M.: Excess noise from small patches of squid axon membrane. Biophys. Soc. Abstr. 119a (1972).Google Scholar
  8. 8.
    Fishman, H. M.: Potassium channel noise in squid axon membranes. Biophys. Soc. Abstr. (1973). (in press).Google Scholar
  9. 9.
    Frankenhaeuser, B.: A method for recording resting and action potentials in the isolated myelinated nervefibre of the frog. J. Physiol. (Lond.)135, 550–559 (1957).Google Scholar
  10. 10.
    Gordon, L. G. M., Haydon, D. A.: The unit conductance channel of alamethicin. Biochim. biophys. Acta (Amst.)255, 1014–1018 (1972).Google Scholar
  11. 11.
    Hill, T. L., Chen, Y.: On the theory of ion transport across the nerve membrane. IV. Noise from the open-close kinetics of K+ channels. Biophys. J.12, 948–959 (1972).Google Scholar
  12. 12.
    Katz, B., Miledi, R.: The statistical nature of the acetylcholine potential and its molecular components. J. Physiol. (Lond.)224, 665–699 (1972).Google Scholar
  13. 13.
    Keynes, R. D.: Excitable membranes. Nature (Lond.)239, 29–50 (1972).Google Scholar
  14. 14.
    Latorre, R., Ehrenstein, G., Lecar, H.: Ion transport through excitability-inducing material (EIM) channels in lipid bilayer membranes. J. gen. Physiol.60, 72–85 (1972).Google Scholar
  15. 15.
    Lee, Y. W.: Statistical theory of communication. New York: Wiley 1960.Google Scholar
  16. 16.
    Pecher, C.: Fluctuations indépendantes de l'excitabilité de deux fibres d'un même nerf. C. R. Soc. Biol. (Paris)124, 839–842 (1937).Google Scholar
  17. 17.
    Poussart, D. J. M.: Nerve membrane current noise: direct measurement under voltage clamp. Proc. nat. Acad. Sci. (Wash.)64, 95–99 (1969).Google Scholar
  18. 18.
    Poussart, D. J. M.: Membrane current noise in lobster axon under voltage clamp. Biophys. J.11, 211–234 (1971).Google Scholar
  19. 19.
    Rice, S. O.: Mathematical analysis of random noise. Bell Syst. Techn. J.23, 282;24, 46 (1944/1945). Reprinted in N. Wax, ed.: Selected Papers on Noise and Stochastic Processes. Dover-New York 1954.Google Scholar
  20. 20.
    Siebenga, E., Verveen, A. A.: The dependence of the 1/f noise intensity of the node of Ranvier on membrane potential. Proceedings of the First European Biophysics Congress, Vol. V, pp. 219–233, Wien 1971.Google Scholar
  21. 21.
    Stevens, C. F.: Inferences about membrane properties from electrical noise measurements. Biophys. J.12, 1028–1047 (1972).Google Scholar
  22. 22.
    Verveen, A. A.: Fluctuation in Excitability, Amsterdam, Central Institute for Brain Research (1961).Google Scholar
  23. 23.
    Verveen, A. A., Derksen, H. E.: Fluctuations in membrane potential of axons and the problem of coding. Kybernetik2, 152–160 (1965).Google Scholar
  24. 24.
    Verveen, A. A., Derksen, H. E.: Fluctuation phenomena in nerve membrane. Proc. IEEE56, 906–916 (1968).Google Scholar
  25. 25.
    Verveen, A. A., Derksen, H. E.: Amplitude distribution of axon membrane noise voltage. Acta physiol. pharmacol. neerl.15, 353–379 (1969).Google Scholar
  26. 26.
    Verveen, A. A.: Membrane noise and channel dynamics. Paper submitted for the 1973 International Symposium on Dynamics and Control in Physiological Systems. Rochester, August 22–24, 1973.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • E. Siebenga
    • 1
  • A. W. A. Meyer
    • 1
  • A. A. Verveen
    • 1
  1. 1.Department of PhysiologyUniversity of LeidenThe Netherlands

Personalised recommendations