Pflügers Archiv

, Volume 361, Issue 3, pp 269–277 | Cite as

Transport of p-aminohippuric acid by plasma membrane vesicles isolated from rat kidney cortex

  • W. Berner
  • R. Kinne


Basal-lateral plasma membrane vesicles and brush border membrane vesicles were isolated from rat kidney cortex and the uptake of p-amino-hippuric acid (PAH) into these vesicles was studied by Millipore filtration techniques.

Both membrane preparations take up PAH into an osmotically reactive intravesicular space. The transport across the brush border membrane seems to involve only simple diffusion whereas in the basal-lateral plasma membrane in addition a specific transport system exists which is inhibited competitively by probenecid. The apparent affinity of this transport system for PAH is 5.4×10−4 M and for probenecid 5.4×10−5 M.

PAH uptake into basal-lateral plasma membrane vésicles is influenced by alteration of the membrane potential. Maneuvers which render the intravesicular space more positive-as for example replacement of chloride by sulfate in the presence of a sodium gradient directed into the vesicles and addition of valinomycin in the presence of a potassium gradient directed into the vesicles-stimulate the uptake of PAH. Replacement of a sodium chloride gradient by a sodium thiocyanate gradient reduces the uptake probably by reducing the inside positive membrane potential.

In the absence of salt gradients anion replacement and replacement of sodium by potassium does not affect PAH transport by basal-lateral plasma membranes.

These results suggest that in isolated basal-lateral membranes transfer of PAH across the membrane is accompanied by a transfer of negative charge. They furthermore provide no evidence for the existence of a sodium-PAH cotransport system in this membrane preparation.

Key words

Kidney tubule Membrane vesicles Organic acid transport PAH Probenecid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beyer, K. H.: Functional characteristics of renal transport mechanism. Pharmacol. Rev.2, 227–280 (1950)Google Scholar
  2. 2.
    Burg, M. B., Orloff, J.: Effect of strophanthidin on electrolyte content and PAH accumulation of rabbit kidney slices. Amer. J. Physiol.202, 565–571 (1962)Google Scholar
  3. 3.
    Dayton, P. G., Yü, T. F., Chen, W., Berger, L., West, L. A., Gutman, A. B.: The physiological disposition of probenecid, including renal clearance, in man, studied by an improved method for its estimation in biological material. J. Pharmacol. exp. Ther.140, 278–286 (1963)Google Scholar
  4. 4.
    Deetjen, P., Sonnenberg, H.: Der tubuläre Transport von p-Aminohippursäure. Mikroperfusionsversuche am Einzelnephron der Rattenniere in situ. Pflügers Arch. ges. Physiol.285, 35–44 (1965)Google Scholar
  5. 5.
    Dixon, M., Webb, E. C.: Enzymes. Second edition. London: Longmans, Green and Co. Ltd. 1964Google Scholar
  6. 6.
    Ecker, J. L., Hook, J. B.: Analysis of factors influencing the in vitro developmental pattern of p-aminohippurate transport by rabbit kidney. Biochim. biophys. Acta (Amst.)339, 210–217 (1974)Google Scholar
  7. 7.
    Farah, A., Frazer, M., Stoffel, M.: Studies on the runout of p-aminohippurate from renal slices. J. Pharmacol. exp. Ther.139, 120–128 (1963)Google Scholar
  8. 8.
    Forster, R. P.: Renal transport mechanisms. Fed. Proc.26, 1008–1019 (1967)Google Scholar
  9. 9.
    Forster, R. P., Copenhaver, J. H., Jr.: Intracellular accumulation as an active process in a mammalian renal transport system in vitro. Energy dependence and competitive phenomena. Amer. J. Physiol.186, 167–171 (1956)Google Scholar
  10. 10.
    Frömter, E.: Electrophysiology and isotonic fluid absorption of proximal tubules of mammalian kidney. MTP International review of science. In: Kidney and urinary tract physiology, vol. 6, K. Thurau, eds., pp. 1–38. London: Butterworth, and Baltimore: University Park Press, 1974Google Scholar
  11. 11.
    Heidrich, H. G., Kinne, R., Kinne-Saffran, E., Hannig, K.: The polarity of the proximal tubule cell in rat kidney. Different surface charges for the brush border microvilli and plasma membranes from the basal infoldings. J. Cell Biol.54, 232–245 (1972)Google Scholar
  12. 12.
    Henderson, P. J. F., McGivan, J. D., Chappell, J. B.: The action of certain antibioties on mitochondrial, erythrocyte and artificial phospholipid membranes. The role of induced proton permeability. Biochem. J.111, 521–535 (1969)Google Scholar
  13. 13.
    Hoffmann, N., Kinne, R.: Phosphate transport by isolated renal brush border vesicles. Pflügers Arch. (in press, 1976)Google Scholar
  14. 14.
    Kinter, W. B.: Chlorophenol red influx and efflux: microspectrophotometry of flounder kidney tubules. Amer. J. Physiol.211, 1152–1164 (1966)Google Scholar
  15. 15.
    Kinter, W. B., Cline, A. L.: Exchange diffusion and runout of Diodrast I131 from renal tissue in vitro. Amer. J. Physiol.201, 309–317 (1961)Google Scholar
  16. 16.
    Kirsch, R., Fleischner, G., Kamisaka, K., Arias, I. M.: Structural and functional studies of ligandin, a major renal organic anion-binding protein. J. clin. Invest.55, 1009–1019 (1975)Google Scholar
  17. 17.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the folin phenol reagent. J. biol. Chem.193, 265–275 (1951)Google Scholar
  18. 18.
    May, D. G., Weiner, I. M.: Bidirectional active transport of m-hydroxybenzoate in proximal tubules of dogs. Amer. J. Physiol.218, 430–436 (1970)Google Scholar
  19. 19.
    Park, Y. S., Yoo, H. S., Hong, S. K.: Kinetic studies on transport of organic acids in rabbit kidney slices. Amer. J. Physiol.220, 95–99 (1971)Google Scholar
  20. 20.
    Pressman, B. C.: Ionophorous antibiotics as models for biological transport. Fed. Proc.27, 1283–1288 (1968)Google Scholar
  21. 21.
    Ross, C. R., Farah, A.: p-Aminohippurate and N-methylnicotinamide transport in dog renal slices—an evaluation of the counter-transport hypothesis. J. Pharmacol. exp. Ther.151, 159–167 (1966)Google Scholar
  22. 22.
    Schoner, W., von Ilberg, C., Kramer, R., Seubert, W.: On the mechanism of Na+- and K+-stimulated hydrolysis of adenosine triphosphate. 1. Purification and properties of a Na+-and K+-activated ATPase from ox brain. Europ. J. Biochem.1, 334–343 (1967)Google Scholar
  23. 23.
    Tanner, G. A., Kinter, W. B.: Reabsorption and secretion of p-aminohippurate and Diodrast in Necturus kidney. Amer. J. Physiol.210, 221–231 (1966)Google Scholar
  24. 24.
    Tune, B. M., Burg, M. B., Patlak, C. S.: Characteristics of p-aminohippurate transport in proximal renal tubules. Amer. J. Physiol.217, 1057–1063 (1969)Google Scholar
  25. 25.
    Vogel, G., Kroger, W.: Das TmPAH der Niere als Na+-abhängiger Größe. Pflügers Arch. ges. Physiol.286, 317–322 (1965)Google Scholar
  26. 26.
    Vogel, G., Kroger, W.: Die Bedeutung des Transports, der Konzentration und der Darbietungsrichtung von Na+ für den tubulären Glucose- und PAH-Transport. Pflügers Arch. ges. Physiol.288, 342–358 (1966)Google Scholar
  27. 27.
    Weiner, I. M., Washington, II, J. A., Mudge, G. H.: On the mechanism of action of probenecid on renal tubular secretion. Bull. Johns Hopk. Hosp.106, 333–346 (1960)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • W. Berner
    • 1
  • R. Kinne
    • 1
  1. 1.Max-Planck-Institut für BiophysikFrankfurt 70Germany

Personalised recommendations