Pflügers Archiv

, Volume 315, Issue 1, pp 27–37 | Cite as

Evidence of a cholinergic nervous mechanism mediating the autoregulatory dilatation of the cerebral blood vessels

  • George I. Mchedlishvili
  • Lia S. Nikolaishvili
Article

Summary

Autoregulatory dilatation and constriction of the pial arteries under conditions of changes in the systemic arterial pressure were studied in experiments with 38 adult rabbits (unanaesthetized or under light urethane anesthesia). These vascular responses disappeared after cerebral ischemia of 1 to 2 min duration (not because of reactive vasodilatation), and this seems be more suggestive of a nervous rather than a muscular (i.e. caused by the Bayliss effect or by vasodilatatory metabolites) mechanism. Intravenous administration of postganglionic cholinergic inhibitors (Atropine, Amizylum, 7351) resulted in disappearance of autoregulatory vasodilatation while vasoconstriction remained unchanged. Similar results were obtained when Amizylum and 7351 were locally applied to the cerebral surface. An experimental analysis proved the specificity of these effects of the drugs mentioned. The conclusion is that a nervous cholinergic mechanism is involved in the functional dilatation of the pial arteries under conditions of decreased blood supply to the cerebral cortex.

Key-Words

Cerebral Arteries Autoregulation Functional Vasodilatation Cholinergic Mechanism Schlüsselwörter Hirnarterien Autoregulation Funktionelle Gefäßerweiterung Cholinergischer Mechanismus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Born, G. V. R.: The relation between the tension and the high-energy phosphate content of smooth muscle. J. Physiol. (Lond.)131, 704–711 (1956).Google Scholar
  2. 2.
    Fog, M.: Cerebral circulation. The reaction of the pial arteries to a fall of blood pressure. Arch. Neurol. Psychiat. (Chic.)37, 351–364 (1937).Google Scholar
  3. 3.
    —: Cerebral circulation. II. Reaction of pial arteries to increase in blood pressure. Arch. Neurol. Psychiat. (Chic.)41, 260–268 (1939).Google Scholar
  4. 4.
    Folkow, B.: Description of the myogenic hypothesis. Circulat. Res.15 (suppl. 1), 279–285 (1964).Google Scholar
  5. 5.
    Forbes, H. S., Nason, G. L., Wortman, R. C.: Cerebral circulation. XLIV. Vasodilatation in the pia following stimulation of the vagus, aortic and carotid sinus nerve. Arch. Neurol. Psychiat. (Chic.)37, 334–350 (1937).Google Scholar
  6. 6.
    Gotoh, F., Tazaki, Y., Meyer, J. S.: Transport of gases through brain and their extravascular action. Exp. Neurol.4, 48–58 (1961).Google Scholar
  7. 7.
    Häggendal, E.: Blood flow autoregulation of the cerebral grey matter with comments on its mechanism. In: Regional Cerebral Blood Flow. An International Symposium. Acta neurol. scand., Suppl.14, 104–110 (1965).Google Scholar
  8. 8.
    Harper, A. M.: Autoregulation of cerebral blood flow: influence of the arterial blood pressure on the blood flow through the cerebral cortex. J. Neurol. Neurosurg. Psychiat.29, 398–403 (1966).Google Scholar
  9. 9.
    Ingvar, D. H.: Cortical state of exitability and cortical circulation. In: Reticular Formation of the Brain, pp. 381–408. Boston, Mass.: Little Brown & Comp. 1958.Google Scholar
  10. 10.
    Kety, S. S.: The cerebral circulation. In: Handbook of Physiology. Sect. 1, Neurophysiology, vol. 3, pp. 1751–1760. Washington: American Physiological Society 1960.Google Scholar
  11. 11.
    Konradi, G. P., Parolla, D. I.: Peripheral tone and the vasodilatation mechanism of cerebral vessels. Fiziol. Zh. S.S.S.R.52, 1064–1072 (1966).Google Scholar
  12. 12.
    Lassen, N. A.: Cerebral blood flow and oxygen consumption in man. Physiol. Rev.39, 183–238 (1959).Google Scholar
  13. 13.
    —: Autoregulation of cerebral blood flow. Circulat. Res.15, (suppl. 1), 201–204 (1964).Google Scholar
  14. 14.
    —: The adjustment of regional circulation to the local metabolitic demand in the brain; the breakdown of this “metabolic control” following hypoxia. In: Correlation of Blood Supply with Metabolism and Function, Proc. of an Intern. Symposium ed. by G. I. Mchedlishvili, pp. 147–153. Tbilisi: Georgian Academic Press Metsniereba 1969.Google Scholar
  15. 15.
    Lavrentieva, N. B., Mchedlishvili, G. I., Pletchkova, E. K.: Distribution and activity of cholinesterase in the nervous structures of the pial arteries (a histochemical study). Bull. exp. Biol. Med.64, (No. 11), 110–113 (1968).Google Scholar
  16. 16.
    Mchedlishvili, G. I.: Functional behaviour of the vascular mechanisms of the brain: its role in the regulation and in the pathology of the cerebral circulation. Leningrad: Publishing House Nauka 1968.Google Scholar
  17. 17.
    —, Baramidze, D. G., Nikolaishvili, L. S.: Functional behaviour of pial and cortical arteries in conditions of increased metabolic demand from the cerebral cortex. Nature (Lond.)213, 506–507 (1967).Google Scholar
  18. 18.
    Mchedlishvili, G. I., Devdariani, M. G.: Intrinsic mechanism pertaining to the collateral circulation in the brain. Pat. Fiziol. éksp. Ter.8, (No. 3), 20–24 (1964).Google Scholar
  19. 19.
    —, Nikolaishvili, L. S.: Investigation of the physiological mechanism correlating blood supply and functional state of the cerebral cortex. Fiziol. Zh. S.S.S.R.52, 380–385 (1966).Google Scholar
  20. 20.
    ——: Zum nervösen Mechanismus der funktionellen Dilatation der Piaarterien. Pflügers Arch. ges. Physiol.296, 14–20 (1967).Google Scholar
  21. 21.
    Moskalenko, Yu. E., Demchenko, I. T., Savich, A. A., Weinstein, G. B.: Peculiarities of the correlation between the blood flow and some index of the functional activity in limited brain regions. In: Correlation of Blood Supply with Metabolism and Function, Proc. of an International Symposium, ed. by G. I. Mchedlishvili, pp. 154–166. Tbilisi: Georgian Academic Press Metsniereba 1969.Google Scholar
  22. 22.
    Nikolaishvili, L. S.: About the effect of carbon dioxide upon the pial arteries which supply the cerebral cortex with blood (in Russian with a Georgian summary). Bull. Acad. Sci. Georgian SSR46, 483–490 (1967).Google Scholar
  23. 23.
    Owman, Ch., Falck, B., Mchedlishvili, G. I.: Adrenergic structures of the pial arteries and their connections with the cerebral cortex. Fed. Proc. (Transl. Suppl.)25, 612–614 (1966).Google Scholar
  24. 24.
    Pletchkova, E. K., Mchedlishvili G. I., Lavrentieva, N. B., Nikolaishvili, L. S.: Evidence for a cholinergic mechanism responsible for the fuctional hyperemia in the cerebral cortex. In: Correlation of Blood Supply with Metabolism and Function, Proc. of an International Symposium, ed. by G. I. Mchedlishvili, pp. 172–184 Tbilisi: Georgian Academic Press Metsniereba 1969.Google Scholar
  25. 25.
    Poole, E. W.: Reactions of the cat pial circulation to hypotensive states induced by hexametonium bromide. Arch. Neurol. Psychiat. (Chic.)71, 640–647 (1954).Google Scholar
  26. 26.
    Rapela, C. E., Green, H. D.: Autoregulation of canine cerebral blood flow. Circulat. Res.15 (suppl. 1), 205–212 (1964).Google Scholar
  27. 27.
    Reichel, K., Kanzow, E.: Der Einfluß von Barbiturat-Narkose und CO2 auf die Autoregulation der Hirnrindendurchblutung. Pflügers Arch. ges. Physiol.279, R 14 (1964).Google Scholar
  28. 28.
    Reivich, M.: Arterial PCO 2 and cerebral hemodynamics. Amer. J. Physiol.206, 25–35 (1964).Google Scholar
  29. 29.
    Sagawa, Kiichi, Guyton, A. C.: Pressure-flow relationship in isolated canine cerebral circulation. Amer. J. Physiol.200, 711–714 (1961).Google Scholar
  30. 30.
    Severinghaus, J. W., Lassen, N.: Step hypocapnia to separate arterial from tissue PCO 2 in the regulation of cerebral blood flow. Circulat. Res.20, 272–278 (1967).Google Scholar
  31. 31.
    Shalit, M. N., Shimojyo, S., Reinmuth, O. M.: Carbon dioxide and cerebral circulatory control. I. The extravascular effect. Arch. Neurol. (Chic.)17, 298–308 (1967).Google Scholar
  32. 32.
    Sokoloff, L.: Local cerebral circulation in rest and during altered activity induced by anesthesia or visual stimulation. In: Regional Neurochemistry, pp. 107–117. Ed. by S. Kety and J. Elkes, Oxford: Pergamon Press 1961.Google Scholar
  33. 33.
    Yoshida, K., Meyer, J. S., Sakamoto, K., Handa, J.: Autoregulation of cerebral blood flow. Electromagnetic flow measurements during acute hypertension in the monkey. Circulat. Res.19, 726–738 (1966).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • George I. Mchedlishvili
    • 1
  • Lia S. Nikolaishvili
    • 1
  1. 1.Department of Pathophysiology, Institute of PhysiologyGeorgian Academy of SciencesTbilisi 42U.S.S.R.

Personalised recommendations