Advertisement

Pflügers Archiv

, Volume 347, Issue 1, pp 39–47 | Cite as

The distribution of membrane bound enzymes in the acini and ducts of the cat pancreas

  • V. Wizemann
  • A. -L. Christian
  • J. Wiechmann
  • I. Schulz
Article

Summary

Enzymes activities of the Na+K+-and the HCO3-ATPases, alkaline phosphatase, amino peptidase and 5′ nucleotidase have been measured in 4 different preparations from the cat pancreas a) in the ducts including all sizes b) in ducts of three different diameters c) in that tissue, which had been dissected off from the ducts, called “acini”, and d) in the whole homogenate of the pancreas. The distribution of the measured enzymes shows, that the Na+K+-activity is highest in the acinar structures (mean value 0.532 μM/mg Protein x h), while the ducts show nearly no Na+K+-ATPase activity. The HCO3-ATPase, the alkaline phosphatase and the 5′ nucleotidase are in the ducts between 2.4 and 3.6 times higher than in the whole organ whereas the amino peptidase does not appear to have a selective distribution. As the HCO3-ATPase activity distribution pattern is identical with that of the secretory capacity of HCO3 as evidenced by earlier micropuncture studies, the data suggest that the HCO3-ATPase is the main enzyme involved in the secretion of the bicarbonate buffer. Concerning the Na+K+-ATPase activity in the acinar structures we cannot contribute to its function in the enzyme secreting process.

Key words

Pancreas Acini Ducts Membrane Enzymes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coleman, R., Michell, R. H., Finlan, F. B., Nawthorne, J. N.: A purified plasma membrane fraction isolated from rat liver under isotonic conditions. Biochim. biophys. Acta (Amst.)135, 573–579 (1967)Google Scholar
  2. 2.
    Dreiling, D. A., Janowitz, H. D., Halpern, M.: The effect of a carbonic anhydrase inhibitor, Diamox, on human pancreatic secretion: Implications on the mechanism of pancreatic secretion. Gastroenterology29, 262–279 (1955)Google Scholar
  3. 3.
    Emmelot, P., Bos, C. J., Benedetti, E. L., Rümke, P. H.: Studies on plasma membranes. I. Chemical composition and enzyme content of plasma membranes isolated from rat liver. Biochim. biophys. Acta (Amst.)90, 126–145 (1964)Google Scholar
  4. 4.
    Fanestil, D. D., Hastings, A. B., Mahowald, T. A.: Environmental CO2 stimulation of mitochondrial adenosine triphosphatase activity. J. biol. Chem.238, 836–842 (1963)Google Scholar
  5. 5.
    Fiske, C. H., Subbarow, Y.: The colorimetric determination of phosphorus. J. biol. Chem.66, 375–400 (1925)Google Scholar
  6. 6.
    Goldbarg, J. A., Rutenburg, A. M.: The colorimetric determination of leucine aminopeptidase in urine and serum of normal subjects and patients with cancer and other diseases. Cancer11, 283–291 (1958)Google Scholar
  7. 7.
    Grossman, M. I., Ivy, A. C.: Effect of alloxan upon external secretion of the pancreas. Proc. Soc. exp. Biol. (N. Y.)63, 62–63 (1946)Google Scholar
  8. 8.
    Jørgensen, P. L.: Regulation of the (Na++K+)-activated ATP hydrolyzing enzyme system in rat kidney. I. The effect of adrenalectomy and the supply of sodium on the enzyme system. Biochim. biophys. Acta (Amst.)151, 212–224 (1968)Google Scholar
  9. 9.
    Kalser, M. H., Grossmann, M. I.: Pancreatic secretion in dogs with ethionine induced pancreatitis. Gastroenterology26, 189–197 (1954)Google Scholar
  10. 10.
    Kaplan, M. M.: Progress in Hepatology. Alkaline phosphatase. Gastroenterology62, 452–468 (1972)Google Scholar
  11. 11.
    King, T. E., Howard, R. C.: Preparations and properties of soluble NADH dehydrogenases from cardiac muscle. In: Methods in enzymology, vol. X, pp. 275–294. New York: Academic Press 1967Google Scholar
  12. 12.
    Kinne, R., Schmitz, J. E., Kinne-Saffran, E.: The localization of the Na+−K+ ATPase in the cells of rat kidney cortex. A study on isolated plasma membranes. Pflügers Arch.329, 191–206 (1971)Google Scholar
  13. 13.
    Lansing, A. L., Belkhode, M. L., Lunch, W. E., Liebermann, J.: Enzymes of plasma membranes of liver. J. biol. Chem.242, 1772–1775 (1967)Google Scholar
  14. 14.
    Lowry, O. H., Rosebrough, N. I., Farr, A. L., Randall, R. L.: Protein measurement with the folin phenol reagent. J. biol. Chem.193, 265–275 (1951)Google Scholar
  15. 15.
    Mangos, J. A., McSherry, N. R.: Micropuncture study of excretion of water and electrolytes by the pancreas. Amer. J. Physiol.221, 496–503 (1971)Google Scholar
  16. 16.
    Palade, G. E., Siekevitz, P., Caro, L. G.: Structure, chemistry and function of the pancreatic exocrine cell. In: The exocrine pancreas-normal and abnormal functions, ed. A.V.S. de Reuk and M. P. Cameron, pp. 23–49. London: Churchill 1962Google Scholar
  17. 17.
    Racker, E.: Adenosine triphosphatase and oxydative phosphorylation. Fed. Proc.21, 54A (1962)Google Scholar
  18. 18.
    Ridderstap, A. S.: Mechanisms involved in exocrine pancreatic secretion. Proefschrift. Nijmegen: Centrale Drukkerij 1969Google Scholar
  19. 19.
    Ridderstap, A. S., Bonting, S. L.: Na−K-activated adenosine triphosphatase and pancreatic secretion in the dog. Amer. J. Physiol.216, 547–553 (1969)Google Scholar
  20. 20.
    Schulz, I.: Pancereatic bicarbonate transport. In: Gastric secretion. ed. G. Sachs, E. Heinz and K. J. Ullrich, pp. 363–379. New York-London, Academic Press 1972Google Scholar
  21. 21.
    Schulz, I., Yamagata, A., Weske, M.: Micropuncture studies on the pancreas of the rabbit. Pflügers Arch.308, 277–290 (1969)Google Scholar
  22. 22.
    Simon, B., Kinne, R., Sachs, G.: The presence of a HCO3 ATPase in pancreatic tissue. Biochim. biophys. Acta (Amst.)282, 293–300 (1972)Google Scholar
  23. 23.
    Simon, B., Thomas, L.: HCO3 stimulated ATPase from mammalian pancreas. Properties and its arrangement with other enzyme activities. Biochim. biophys. Acta (Amst.)288, 434–442 (1972)Google Scholar
  24. 24.
    Skou, J. C.: Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol. Rev.45, 596–617 (1965)Google Scholar
  25. 25.
    Swanson, C. H., Solomon, A. K.: Evidence for Na−H exchange in the rabbit pancreas. Nature New Biol.236, 183–184 (1972)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • V. Wizemann
    • 1
  • A. -L. Christian
    • 1
  • J. Wiechmann
    • 1
  • I. Schulz
    • 1
  1. 1.Max-Planck-Institut für BiophysikFrankfurt/M.Germany

Personalised recommendations