Pflügers Archiv

, Volume 326, Issue 4, pp 316–323 | Cite as

Independent stimulation of sodium entry and sodium extrusion in frog urinary bladder by aldosterone

  • Karel Janáček
  • Renata Rybová
  • Marie Slavíková


10−6M d-aldosterone was found to increase the sodium content in a conventional preparation (frog Ringer solution on both sides) of the urinary bladder of female frogsRana temporaria, whereas the same preparation of male frogs showed a highly significant decrease of the sodium content, which did not occur in preparations inhibited by 5·10−4M ouabain. In female frog bladders, nevertheless, the extrusion of sodium ions across the nonmucosal surfaces of epithelial cells is also stimulated by aldosterone, as shown by an increase in the transcellular sodium transport, an independent stimulation of the sodium pump by aldosterone being also involved, as demonstrated by a decrease of the sodium content in a nonpolarized preparation of female frog bladders (vesicles filled with liquid paraffin). The conclusion is drawn that aldosterone in sodium-transporting epithelial layers stimulates independently the entry of sodium ions across the mucosal membranes of the epithelial cells and their active extrusion across the nomucosal surfaces of the cells. In the nonpolarized preparation of male frog bladders no further decrease in the sodium content is observed with aldosterone, the minimum content of sodium in the transport pool being probably achieved here already by the prolonged incubation of the untreated preparation.

Key words

Frog Bladder Sodium Transport Aldosterone Sex Dependence of Aldosterone Effect 


Froschblase Natriumtransport Aldosteron Geschlechts-abhängigkeit des Aldosteroneffekts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacon, J. S. D., Bell, D. J.: Fructose and glucose in the blood of the foetal sheep. Biochem. J.42, 397–405 (1948).PubMedGoogle Scholar
  2. Cereijido, M., Rotunno, C. A.: Transport and distribution of sodium across frog skin. J. Physiol. (Lond.)190, 481–497 (1967).Google Scholar
  3. Civan, M. M., Kedem, O., Leaf, A.: Effect of vasopressin on toad bladder under conditions of zero net sodium transport. Amer. J. Physiol.211, 569–573 (1966).PubMedGoogle Scholar
  4. Gachelin, G., Bastide, F.: Mise en évidence de deux ATPases activées par le sodium et le potassium dans les cellules épithéliales de la vessie de grenouille. C. R. Acad. Sci. (Paris)267, 906–907 (1968).Google Scholar
  5. Janáček, K., Rybová, R.: Stimulation of the sodium pump in frog bladder by oxytocin. Nature (Lond.)215, 992–993 (1967).CrossRefGoogle Scholar
  6. ——: Nonpolarized frog bladder preparation. Pflügers Arch.318, 294–304 (1970).PubMedCrossRefGoogle Scholar
  7. Rotunno, C. A., Kowalewski, V., Cereijido, M.: Nuclear spin resonance evidence for complexing of sodium in frog skin. Biochim. biophys. Acta (Amst.)135, 170–173 (1967).Google Scholar
  8. Rybová, R., Janáček, K.: A sex-dependent effect of aldosterone on frog bladder. Naturwissenschaften57, 459–460 (1970).PubMedCrossRefGoogle Scholar
  9. Sanderson, P. H.: Potentiometric determination of chloride in biological fluids. Biochem. J.52, 502–505 (1952).PubMedGoogle Scholar
  10. Sharp, G. W. G., Leaf, A.: Mechanism of action of aldosterone. Physiol. Rev.46, 593–633 (1966).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Karel Janáček
    • 1
  • Renata Rybová
    • 1
  • Marie Slavíková
    • 1
  1. 1.Laboratory for Cell Membrane Transport, Institute of MicrobiologyCzechoslovak Academy of SciencesPrague

Personalised recommendations