Skip to main content
Log in

Adrenocortical activation during long-term exercise in dogs: Evidence for a glucostatic mechanism

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Experiments were performed to elucidate the mechanism of changes in plasma 17-OHCS level during prolonged muscular exercise of moderate intensity. Dogs performed 120 min standard treadmill exercise. Plasma level of 17-OHCS increased during exercise. There was no change in the rate of removal of intravenously injected cortisol as compared with resting conditions. Exercise-dependent increase in plasma 17-OHCS level was prevented by continuous intravenous glucose infusion at a rate sufficient to prevent exercise hypoglycaemia. The same result was obtained when systemic hypoglycaemia persisted but glucose supply to the brain or liver was augmented by continuous glucose infusion to the carotid artery or portal vein. The same amount of glucose infused into a peripheral vein failed to abolish the adrenocortical response to exercise. The insulin-evoked hypoglycaemia of the magnitude comparable to that obtained during standard exercise did not significantly affect plasma 17-OHCS in resting animals.

It is concluded that activation of glucocorticoid secretion during exercise is related to the glucostatic mechanism. Exercise hypoglacaemia per se is not responsible for adrenocortical activation. The results suggest that brain and hepatic glucoreceptors are engaged in the activation of the pituitary-adrenocortical system during exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anand, B. K., Dua, S., Singh, B.: Effect of glucose on the activity of hypothalamic feeding center. Science138, 597 (1962).

    Google Scholar 

  2. Bethge, H., Nahmer, P., Zimmermann, H.: Der Insulinhypoglykämietest als Funktionsprüfung des Hypothalamus-hypophysen-nebennierenrinden-System. Acta endocr. (Kbh.)54, 668 (1967).

    Google Scholar 

  3. Cornil, A., Da Costa, A., Copinschi, G., Franckson, G.: Effect of muscular exercise on the plasma level of cortisol in man. Acta endocr. (Kbh.)48, 163 (1965).

    Google Scholar 

  4. Dúner, H.: The influence of the blood glucose level on the secretion of adrenaline and noradrenaline from the suprarenal. Acta physiol. scand.28 suppl., 102 (1953).

    Google Scholar 

  5. Franke, G., Stockert, H. G., Korff, R., Haberich, F. J.: Kohlenhydratreceptoren im Portalkreislauf. Pflügers Arch.319, R125 (1970).

    Google Scholar 

  6. Froesch, R., Kaegi, H. R., Labhart, A.: Der Einfluß von Hypoglykaemie und Muskelarbeit auf die Blutkonzentration der Nebennierenrindenhormone. Schweiz. med. Wschr.84, 304 (1954).

    Google Scholar 

  7. Glick, S. M., Roth, J., Yalov, R. S., Berson, S. A.: The regulation of growth hormone secretion. Recent. Progr. Hormone Res.21, 241 (1965).

    Google Scholar 

  8. Goldfien, A.: Effect of glucose deprivation on the sympathetic outflow to the adrenal medulla and adipose tissue. Pharmacol. Rev.18, 303 (1966).

    Google Scholar 

  9. Hökfelt, B., Bydgeman, S.: Increased adrenaline production following administration of 2 deoxy-d-glucose in the rat. Proc. Soc. exp. Biol. (N. Y.)106, 537 (1961).

    Google Scholar 

  10. Kaegi, H. R.: Der Einfluß von Muskelarbeit auf die Blutkonzentration der Nebennierenrindenhormone. Helv. med. Acta22, 258 (1955).

    Google Scholar 

  11. King, E. J.: Microanalysis in medical biochemistry. London: J. A. Churchill 1957.

    Google Scholar 

  12. Kleinerman, J., Lancette, S. M.: Effect of mild steady state exercise on the cerebral hemodynamics in man. J. clin. Invest.34, 945 (1955).

    Google Scholar 

  13. Kraicer, J., Logothepoulos, J.: Adrenal cortical response to insulin induced hypoglycaemia: II. Mediating role of adrenaline and/or noradrenaline. Acta endocr. (Kbh.)44, 259 (1963).

    Google Scholar 

  14. Levis, B.: A paper-chromatographic technique for determination of plasma corticoids. J. clin. Path.10, 148 (1957).

    Google Scholar 

  15. Mayer, J.: Genetic, traumatic and environmental factors in etiology of obesity. Physiol. Rev.33, 472 (1953).

    Google Scholar 

  16. Nazar, K.: Changes in 17-hydroxycorticosteroids level in blood plasma under the influence of muscular exercise. Acta physiol. pol. (English ed.)16, 176 (1965).

    Google Scholar 

  17. —: Relations between total muscular work and changes in levels of 17-hydroxysteroids in the blood. Acta physiol. pol. (English ed.)17, 915 (1966).

    Google Scholar 

  18. Nazar, K.: Activity of adrenergic system and corticosteroid secretion during exercise in dogs. Acta physiol. pol. (English ed.)22, (in press) (1971).

  19. Nazar, K., Brzezińska, Z., Ŀyszczarz, J., Danielewicz-Kotowicz, A.: Sympathetic control of the utilization of energy substrates during long-term exercise in dogs (To be published.)

  20. Niijima, A.: cit. after Russeket al. [24].

  21. Penaloza-Rojas, J., Russek, M.: Anorexia produced by direct current blockade of the vagus nerve. Nature (Lond.)200, 176 (1963).

    Google Scholar 

  22. Peterson, R. E., Karrer, A., Guerra, S. L.: Evaluation of Silber-Porter procedure for determination of plasma hydrocortisone. Analyt. Chem.29, 144 (1957).

    Google Scholar 

  23. Rodriguez-Zendejas, A. M., Vega, C., Soto-Mora, L. M., Russek, M.: Some effects of intraperitoneal glucose and of intraportal glucose and adrenaline. Physiol. Behav.3, 259 (1968).

    Google Scholar 

  24. Russek, M.: An hypothesis on the participation of hepatic glucoreceptors in the control of food intake. Nature (Lond.)197, 97 (1963).

    Google Scholar 

  25. —, Rodriguez-Zendejas, A. M., Pina, S.: Hypothetical liver receptors and anorexia caused by adrenaline and glucose. Physiol. Behav.3, 249 (1968).

    Google Scholar 

  26. Sanders, C. S., Levinson, G. E., Abelman, H., Freinkel, N.: Effect of exercise on peripheral utilisation of glucose in man. New Engl. J. Med.271, 220 (1964).

    Google Scholar 

  27. Smith, G. P., Epstein, A. N.: Increased feeding in response to decrease glucose utilisation in the rat and monkey. Amer. J. Physiol.217, 1083 (1969).

    Google Scholar 

  28. — Root, A. W.: Effect of feeding on hormonal responses to 2 DG in conscious monkeys. Endocrinology85, 963 (1969).

    Google Scholar 

  29. Staechlin, A., Labhart, A., Froesch, R., Kaegi, H. R.: The effect of muscular exercise and hypoglycaemia on the plasma level of 17-hydroxysteroids in normal adults and in patients with the androgenital syndrome. Acta endocr. (Kbh.)18, 521 (1955).

    Google Scholar 

  30. Suzuki, T.: Effect of spinal cord transsection on adrenal 17-hydroxysteroids secretion in response to insulin hypoglycaemia. Nature (Lond.)206, 408 (1964).

    Google Scholar 

  31. — Otsuka, K., Matsui, M., Ohokuzi, S., Sahaik, K., Harada, Y.: Effect of muscular exercise on adrenal 17-hydroxycorticoids secretion in the dog. Endocrinology80, 1148 (1967).

    Google Scholar 

  32. Zukoski, C. F.: Mechanism of action of insulin hypoglycaemia on adrenal cortical secretion. Endocrinology78, 1265 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazar, K. Adrenocortical activation during long-term exercise in dogs: Evidence for a glucostatic mechanism. Pflugers Arch. 329, 156–166 (1971). https://doi.org/10.1007/BF00586989

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586989

Key-Words

Navigation