Advertisement

Pflügers Archiv

, Volume 339, Issue 1, pp 1–15 | Cite as

Passive electrical properties of atrial fibers of the rabbit heart

  • Felix I. M. Bonke
Article

Summary

In order to polarize simultaneously a group of fibers of the isolated right atrium of the rabbit, a relatively large extracellular suction electrode was used and the electrotonic spread of the applied current was measured by means of microelectrodes impaled at various distances from this polarizing electrode.

This method (described in detail) seemed to be reliable since in sheep Purkinje fibers the current spread with approximately the same space and time constants as when current was injected intracellularly by means of a microelectrode (Weidmann, 1952; Fozzard, 1966). In the crista terminalis and the atrial trabecula space constants of about 1 mm and 0.65 mm respectively were found. In both preparations the membrane time constant, as measured by the time-course of electrotonic potentials, was about the same, namely 3.0 msec and 2.7 msec respectively.

From the conduction velocity and the time constant of the early exponential change of the foot of the propagated action potential, the specific membrane capacity of atrial fibers could be calculated to be about 1 μF/cm2 when assumptions were made for the specific internal resistance and the diameter of these fibers. From the values given above the specific membrane resistance of rabbit atrial fibers is of the order of 3000 ohmcm2.

Key words

Electrotonic Spread Space Constant Time Constant Membrane Capacity Membrane Resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, E. D.: The recovery process of excitable tissues. II. J. Physiol. (Lond.)55, 193–225 (1921).Google Scholar
  2. Bonke, F. I. M.: Electrotonic spread in the sinoatrial node of the rabbit heart. Pflügers Arch.339, 17–23 (1973).Google Scholar
  3. Coraboeuf, E.: Resistance measurements by means of microelectrodes in cardiac muscle. In: Glass microelectrodes, pp. 224–271. Ed. M. Lavallée, O. F. Schanne and N. C. Hébert. New York: John Wiley and Sons 1969.Google Scholar
  4. Coraboeuf, E., Weidmann, S.: Temperature effects on the electrical activity of Purkinje fibres. Helv. physiol. pharmacol. Acta12, 32–41 (1954).Google Scholar
  5. Deck, K. A., Trautwein, W.: Ionic currents in cardiac excitation. Pflügers Arch. ges. Physiol.280, 63–80 (1964).Google Scholar
  6. Dudel, J., Peper, K., Ruedel, R., Trautwein, W.: The potassium component of membrane current in Purkinje fibers. Pflügers Arch. ges. Physiol.296, 308–327 (1967).Google Scholar
  7. Fozzard, H.: Membrane capacity of the cardiac Purkinje fibre. J. Physiol. (Lond.)182, 255–267 (1966).Google Scholar
  8. Hall, A. E., Hutter, O. F., Noble, D.: Current-voltage relations of Purkinje fibres in sodium-deficient solutions. J. Physiol. (Lond.)166, 225–240 (1963).Google Scholar
  9. Hodgkin, A. L., Rushton, W. A. H.: The electrical constants of a crustacean nerve fibre. Proc. roy. Soc. B133, 444–479 (1946).Google Scholar
  10. Hutter, O. F., Trautwein, W.: Vagal and sympathetic effects on the pacemaker fibers in the sinus venosus of the heart. J. gen. Physiol.39, 715–733 (1956).Google Scholar
  11. Kamiyama, A., Matsuda, K.: Electrophysiological properties of the canine ventricular fiber. Jap. J. Physiol.16, 407–420 (1966).Google Scholar
  12. Kawamura, K., James, T. N.: Comparative ultrastructure of cellular junctions in working myocardium and the conduction system under normal and pathologic conditions. J. molec. cell. Cardiol.3, 31–60 (1971).Google Scholar
  13. Meijer, A. A.: Compensated cathode-follower for use in electro-and neurophysiology. Med. Biol. Engng.5, 299–302 (1967).Google Scholar
  14. Mobley, B. A., Page, E.: The surface area of sheep cardiac Purkinje fibres. J. Physiol. (Lond.)220, 547–563 (1972).Google Scholar
  15. Mori, M.: Die Morphologie des Reizleitungssystems des Herzens. Acta medica35, 1–35 (1966).Google Scholar
  16. Paes de Carvalho, A., Hoffman, B. F., de Paula Carvalho, M.: Two components of the cardiac action potential. I. Voltage-time course and the effect of acetylcholine on atrial and nodal cells of the rabbit heart. J. gen. Physiol.54, 607–635 (1969).Google Scholar
  17. Sakamoto, Y.: Membrane characteristics of the canine papillary muscle fiber. j. gen. Physiol.54, 765–781 (1969).Google Scholar
  18. Sakamoto, Y., Goto, M.: A study of the membrane constants in the dog myocardium. Jap. J. Physiol.20, 30–41 (1970).Google Scholar
  19. Schuetz, E.: Elektrophysiologie des Herzens bei einphasischer Ableitung. Ergebn. Physiol.38, 493–620 (1936).Google Scholar
  20. Tanaka, I., Sasaki, Y.: On the electrotonic spread in cardiac muscle of the mouse. J. gen. Physiol.49, 1089–1110 (1966).Google Scholar
  21. Tasaki, I., Hagiwara, S.: Capacity of muscle fiber membrane. Amer. J. Physiol.188, 423–429 (1957).Google Scholar
  22. Tomita, T.: Current spread in the smooth muscle of the guinea-pig vas deferens. J. Physiol. (Lond.)189, 163–176 (1967).Google Scholar
  23. Truex, R. C.: Comparative anatomy and functional considerations of the cardiac conduction system. In: The specialized tissues of the heart, pp. 22–38. Ed. A. Paes de Carvalho, W. C. de Mello and B. F. Hoffman. Amsterdam: Elsevier 1961.Google Scholar
  24. Vassalle, M.: Cardiac pacemaker potentials at different extra- and intracellular K concentrations. Amer. J. Physiol.208, 770–775 (1965).Google Scholar
  25. Weidmann, S.: The electrical constants of Purkinje fibres. J. Physiol. (Lond.)118, 348–360 (1952).Google Scholar
  26. Weidmann, S.: Rectifier properties of Purkinje fibers. Amer. J. Physiol.183, 671 (1955).Google Scholar
  27. Weidmann, S.: Electrical constants of trabecular muscle from mammalian heart. J. Physiol. (Lond.)210, 1041–1054 (1970).Google Scholar
  28. Woodbury, J. W., Crill, W. E.: On the problem of impulse conduction in the atrium. In: Nervous Inhibition, pp. 124–135. Ed. E. Florey. Oxford: Pergamon Press 1961.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Felix I. M. Bonke
    • 1
  1. 1.Department of Physiology University of BerneSwitzerland

Personalised recommendations