Advertisement

Pflügers Archiv

, Volume 379, Issue 2, pp 165–172 | Cite as

The cholinergic pathway to cerebral blood vessels

II. Physiological studies
  • Elizabeth Pinard
  • M. J. Purves
  • J. Seylaz
  • J. V. Vasquez
Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology

Summary

The effect of stimulating the greater superficial petrosal nerve (g.s.p.n.) upon retroglenoid venous blood flow has been tested in anaesthetized, paralysed and artificially ventilated rats. In 11 out of 15 tests, blood flow increased by an average of 25% with a time to peak response of 28 s. This response was abolished with the injection of atropine 0.1 mg kg−1 injected intra-arterially. With both petrosal nerves intact, the administration of 6–7% CO2 in air or 15% O2 in N2 caused average increases in blood flow of 105% and 45% respectively. These responses were not affected by bilateral section of the g.s.p.n. Similar experiments were carried out in 5 anaesthetized, spontaneously breathing rabbits in which, in addition toPaCO2 andPaO2,PO2,PCO2 and blood flow in the caudate nucleus were measured continuously using chronically implanted mass spectrometer catheters and heated thermistors. Caudate nucleus blood flow increased in response to hypoxia and hypercapnia and this response was not significantly affected by section of one or both g.s.p.n., sinus or vagus nerves. With section of sinus and vagus nerves, blood flow changed passively with arterial pressure.

Key words

Cerebral blood flow Dialtor pathway Mass spectrometry Hypoxia Hypercapnia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bates, D., Sundt, E.: The relevance of peripheral baroreceptors and chemoreceptors to regulation of cerebral blood flow in the cat. Circ. Res.38, 488–493 (1976)Google Scholar
  2. Bill, A., Linder, J.: Sympathetic control of cerebral blood flow in acute arterial hypertension. Acta Physiol. Scand.96, 114–121 (1976)Google Scholar
  3. Borodulya, A. V., Pletchkova, E. K.: Distribution of cholinergic and adrenergic nerves in the internal carotid artery. A histochemical study. Acta Anat.86, 410–425 (1973)Google Scholar
  4. Chorobski, J., Penfield, W.: Cerebral vasodilator nerves and their pathway from the medulla oblongata. Arch Neurol. Psychiat. (Chic.)28, 1257–1289 (1932)Google Scholar
  5. Cobb, S., Finesinger, J. E.: The vagal pathway of the vasodilator impulses. Arch. Neurol. Psychiat. (Chic.)28, 1243–1256 (1932)Google Scholar
  6. D'Alecy, L., Rose, C. J.: Parasympathetic cholinergic control of cerebral blood flow in dogs. Circ. Res.41, 324–331 (1977)Google Scholar
  7. Edvinsson, L., Nielsen, K. C., Owman, Ch., Sporrong, B.: Cholinergic mechanisms in pial vessels. Z. Zellforsch.134, 311–325 (1972)Google Scholar
  8. Exley, K. A., Fleming, M. C., Espelien, A. D.: Effects of drugs which depress the peripheral nervous system on the reticular activating system of the cat. Br. J. Pharmacol. Chemother.13, 485–492 (1958)Google Scholar
  9. Fitch, W., MacKenzie, E. T., Harper, A. M.: Effect of sympathectomy on the autoregulation of cerebral blood flow. In: Blood flow and metabolism in the brain (A. M. Harper et al., ed.), pp. 2.12–2.16. Edinburgh: Churchill-Livingstone 1975Google Scholar
  10. Greene, E. Ch.: Anatomy of the rat. New York: Hafner Publ. Co. 1959Google Scholar
  11. Harper, A. M., Desmukh, V. D., Rowan, J. O., Jennett, W. B.: Influence of sympathetic nervous activity on cerebral blood flow. Arch. Neurol.27, 1–6 (1972)Google Scholar
  12. Heistad, D. D., Marcus, M. L., Ehrhardt, J. C., Abboud, F. M.: Effect of stimulation of carotid chemoreceptors on total and regional cerebral blood flow. Circ. Res.38, 20–25 (1976)Google Scholar
  13. Hoff, J. T., MacKenzie, E. T., Harper, A. M.: Cerebrovascular responses to hypercapnia and hypoxia following VIIth cranial nerve section. In: Blood flow and metaboism in the brain (A. M. Harper et al., ed.), pp. 2.37–2.38. Edinburgh: Churchill-Livingstone 1975Google Scholar
  14. James, I. M., Millar, R. A., Purves, M. J.: Observations on the extrinsic neural control of cerebral blood flow in the baboon. Circ. Res.25, 77–93 (1969)Google Scholar
  15. Krnjevic, K.: Central cholinergic pathways. Fed. Proc.28, 113–120 (1969)Google Scholar
  16. Kuschinsky, W., Wahl, M., Neiss, A.: Evidence for cholinergic dilatatory receptors in pial arteries of cats. A microapplication study. Pflügers Arch.347, 199–208 (1974)Google Scholar
  17. Loeb, C., Magni, F., Rossi, G. F.: Electrophysiological analysis of the action of atropine on the central nervous system. Arch. Ital. Biol.98, 293–307 (1960)Google Scholar
  18. Longo, V. G.: Effects of scopolamine and atropine on electroencephalographic and behavioural reactions due to hypothalamic stimulation. J. Pharmacol. Exp. Ther.116, 198–208 (1956)Google Scholar
  19. Longo, V. G.: Behavioural and electroencephalographic effects of atropine and related compounds. Pharmacol. Rev.18, 965–996 (1966)Google Scholar
  20. MacKenzie, E., Mori, M., Reis, D. J.: Increased cerebral blood flow elicited by stimulation of fastigial nucleus of cerebellum. Neuroscience (in press, 1978)Google Scholar
  21. Molnar, L., Seylaz, J.: Mise en evidence et interpretation des effects de la decerebration et des sinus carotidiens sur la circulation cerebrale. C. R. Acad. Sci. (Paris)260, 3164–3167 (1965)Google Scholar
  22. Mueller, S. M., Heistad, D. D., Marcus, M. L.: Total and regional cerebral blood flow during hypotension, hypertension and hypocapnia: effective sympathetic denervation in dogs. Circ. Res. (in press 1978)Google Scholar
  23. Nilsson, B.: Measurements of overall blood flow and oxygen consumption in the rat brain. Acta Physiol. Scand.92, 142–144 (1974)Google Scholar
  24. Nilsson, B., Siesjö, B. K.: A method for determining blood flow and oxygen consumption in the rat brain. Acta Physiol. Scand.96, 72–82 (1976)Google Scholar
  25. Nilsson, B., Norberg, K., Nordström, C. H., Siesjö, B. K.: Influence of hypoxia and hypercapnia on CBF in rats. In: Blood flow and metabolism in the brain (A. M. Harper et al., ed.), pp. 9.19–9.23. Edinburgh-London-New York: J. Churchill-Livingstone 1975Google Scholar
  26. Ostfeld, A. M., Machne, X., Unna, K. R.: The effects of atropine on the electroencephalogram and behaviour of man. J. Pharmacol. Exp. Ther.128, 265–272 (1960)Google Scholar
  27. Pinard, E., Seylaz, J., Mamo, H.: Quantitative continuous measurement ofpO2 andpCO2 in artery and vein. Med. Biol. Eng. Comput.16, 59–64 (1978)Google Scholar
  28. Ponte, J., Purves, M. J.: The role of the carotid body chemoreceptors and carotid sinus baroreceptors in the control of cerebral blood vessels. J. Physiol.237, 315–340 (1974)Google Scholar
  29. Purves, M. J.: Are cerebral blood vessels significantly regulated by vasomotor nerves? Circ. Res.43, 485–493 (1978)Google Scholar
  30. Salanga, V. D., Waltz, A. G.: Regional cerebral blood flow during stimulation of VIIth cranial nerve. Stroke4, 213–217 (1973)Google Scholar
  31. Scremin, O. U., Rubenstein, E. H., Sonnenschein, R. R.: Evidence for a cholinergic neurogenic component in the cerebral vasodilation to hypercapnia in the rabbit. Fed. Proc.36, 568 (1977)Google Scholar
  32. Sercombe, R., Aubineau, P., Edvinsson, L., Mamo, H., Owman, C., Pinard, E., Seylaz, J.: Neurogenic influence on local cerebral blood flow. Neurology25, 954–963 (1975)Google Scholar
  33. Seylaz, J.: Biophysique de la mesure rapide de l'irrigation sanguine locale. Helv. Physiol. Acta26, 1–32 (1968)Google Scholar
  34. Seylaz, J., Aubineau, P. F., Correze, J. L., Mamo, H.: Techniques for continuous measurement of local cerebral blood flow,PaO2,PaCO2 and blood pressure in the non-anesthetized animal. Pflügers Arch.340, 175–180 (1973)Google Scholar
  35. Seylaz, J., Pinard, E., Correze, J. L., Aubineau, P. F., Mamo, H.: Quantitative continuous measurement of blood gas tensions by mass spectrometry. J. Appl. Physiol.37, 937–941 (1974)Google Scholar
  36. Shalit, M. N., Reinmuth, O. M., Shimojyo, S., Scheinberg, P.: Carbon dioxide and cerebral circulatory control. III. The effects of brain stem lesions. Arch. Neurol.17, 342–353 (1967)Google Scholar
  37. Vasquez, J. V., Purves, M. J.: The dilator pathway to cerebral blood vessels. I. Morphological studies. Pflügers Arch.379, 157–163 (1979)Google Scholar
  38. White, R. P., Rinaldi, F., Himwich, H. E.: Central and peripheral nervous effects of atropine sulphate and mepiperphenidol bromide (Darstine) on human subjects. J. Appl. Physiol.8, 635–642 (1956)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Elizabeth Pinard
    • 1
    • 2
  • M. J. Purves
    • 1
    • 2
  • J. Seylaz
    • 1
    • 2
  • J. V. Vasquez
    • 1
    • 2
  1. 1.Department of PhysiologyUniversity of BristolBristolUK
  2. 2.Départment de NeurophysiopathologieHumaine-Hôpital Lariboisière ParisParisFrance

Personalised recommendations