Pflügers Archiv

, Volume 379, Issue 2, pp 137–142 | Cite as

The steady state TTX-sensitive (“window”) sodium current in cardiac Purkinje fibres

  • David Attwell
  • Ira Cohen
  • David Eisner
  • Mitsuyoshi Ohba
  • Carlos Ojeda
Excitable Tissues and Central Nervous Physiology


Voltage clamp experiments on isolated sheep Purkinje fibres showed an increase of the steady state outward membrane current, over the potential range −65 mV to −15 mV, in the presence of tetrodotoxin (TTX, 3 · 10−5 M). This “window” current is considered to be the steady state component of the fast sodium current (INa), resulting from the crossover of the activation and inactivation curves which govern the opening of the sodium channel.

TTX had no significant effect on the reversal potential, activation curve, kinetics or instantaneous I–V relationship of the pacemaker currentIK2.

The window found in these experiments extends to potentials well into the range of the action potential plateau. Consequently small changes of the steady stateINa might have large effects on the action potential duration. The effects of TTX and local anaesthetics are discussed in this context.

Key words

Tetrodotoxin Purkinje fibre Sodium current Voltage clamp Action potential duration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baer, M., Best, P. M., Reuter, H.: Voltage-dependent action of tetrodotoxin in mammalian cardiac muscle. Nature (Lond.)263, 344–345 (1976)Google Scholar
  2. Baumgarten, C. M., Isenberg, G.: Depletion and accumulation of potassium in the extra-cellular clefts of Purkinje fibres during voltage clamp hyperpolarization and depolarization. Pflügers Arch. Ges. Physiol.368, 19–31 (1977)Google Scholar
  3. Cohen, I., Strichartz, G.: On the voltage dependent action of tetrodotoxin. Biophys. J.17, 275–279 (1977)Google Scholar
  4. Cohen, I., Daut, J., Noble, D.: The effects of potassium and temperature on the pacemaker currenti K 2, in Purkinje fibres. J. Physiol. (Lond.)260, 55–74 (1976)Google Scholar
  5. Coraboeuf, E., Deroubaix, E.: Shortening effect of tetrodotoxin on action potentials of the conducting system in the dog heart. J. Physiol. (Lond.)280, 24P (1978)Google Scholar
  6. Davis, L. D., Temte, J. V.: Electrophysiological actions of lidocaine on canine ventricular muscle and Purkinje fibres. Circ. Res.24, 639–655 (1969)Google Scholar
  7. Deck, K. A., Kern, R., Trautwein, W.: Voltage clamp technique in mammalian cardiac fibres. Pflügers Arch. Ges. Physiol.280, 50–62 (1964)Google Scholar
  8. Dubois, J. M., Bergman, C.: Late sodium current in the node of Ranvier. Pflügers Arch. Ges. Physiol.357, 145–148 (1975)Google Scholar
  9. Dudel, J., Rüdel, R.: Voltage and time dependence of excitatory sodium current in cooled sheep Purkinje fibres. Pflügers Arch. Ges. Physiol.315, 136–158 (1970)Google Scholar
  10. Dudel, J., Peper, K., Rüdel, R., Trautwein, W.: The effect of tetrodotoxin on the membrane current in cardiac muscle (Purkinje fibers). Pflügers Arch. Ges. Physiol.295, 213–226 (1967)Google Scholar
  11. Gadsby, D. C., Cranefield, P.: Two levels of resting potential in cardiac Purkinje fibres. J. Gen. Physiol.70, 725–746 (1977)Google Scholar
  12. Gibbons, W. R., Fozzard, H. A.: Slow inward current and contraction of sheep cardiac Purkinje fibres. J. Gen. Physiol.65, 367–384 (1975)Google Scholar
  13. Hogan, P., Spitzer, K. W.: Manganese and electrogenic phenomena in canine Purkinje fibres. Circ. Res.36, 377–391 (1975)Google Scholar
  14. Johnson, E. A., Lieberman, M.: Heart: excitation and contraction. Annu. Rev. Physiol.33, 479–532 (1971)Google Scholar
  15. Kass, R. S., Siegelbaum, S., Tsien, R. W.: Incomplete inactivation of the slow inward current in cardiac Purkinje fibres. J. Physiol. (Lond.)263, 127P-128P (1976)Google Scholar
  16. McAllister, R. E., Noble, D., Tsien, R. W.: Reconstruction of the electrical activity of cardiac Purkinje fibres. J. Physiol. (Lond.)251, 1–59 (1975)Google Scholar
  17. McAllister, R. E., Noble, D.: The time and voltage dependence of the slow outward current in cardiac Purkinje fibres. J. Physiol. (Lond.)186, 632–662 (1966)Google Scholar
  18. Maughan, D. E.: Some effects of prolonged depolarization on membrane currents in bullfrog atrial muscle. J. Memb. Biol.11, 331–352 (1973)Google Scholar
  19. Narahashi, T., Moore, J. W., Scott, W. R.: Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J. Gen. Physiol.47, 965–974 (1964)Google Scholar
  20. Noble, D., Tsien, R. W.: The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J. Physiol. (Lond.)195, 185–214 (1968)Google Scholar
  21. Noble, D., Tsien, R. W.: Reconstruction of the repolarization process in cardiac Purkinje fibres based on voltage clamp measurements of membrane current. J. Physiol. (Lond.)200, 233–254 (1969)Google Scholar
  22. Strichartz, G.: Molecular mechanism of nerve block by anaesthetics. Anesthesiology45, 421–441 (1976)Google Scholar
  23. Weidmann, S.: Effects of calcium ions and local anaesthetics on electrical properties of Purkinje fibres. J. Physiol. (Lond.)129, 568–582 (1955)Google Scholar
  24. Weld, F. M., Bigger, J. T.: The effect of lidocaine on diastolic transmembrane currents determining pacemaker depolarization in cardiac Purkinje fibres. Circ. Res.38, 203–208 (1976)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • David Attwell
    • 1
  • Ira Cohen
    • 1
  • David Eisner
    • 1
  • Mitsuyoshi Ohba
    • 1
  • Carlos Ojeda
    • 1
  1. 1.The University Laboratory of PhysiologyOxfordEngland

Personalised recommendations