Pflügers Archiv

, Volume 335, Issue 1, pp 29–45 | Cite as

Dynamic pressure-flow curves in the autoregulating kidney vasculature of conscious dogs

  • H. Kirchheim
  • R. Gross
  • B. Keintzel


In three healthy conscious dogs blood pressure was measured in the abdominal aorta with an implanted miniature transducer. Flow velocity in the left renal artery was recorded by an electromagnetic flowmeter. An appropriate distance between the transducer sites compensated the time-lag introduced by the flowmeter system and allowed records with a negligable foot to foot phase shift between the flow- and the pressure pulse. Pressure-flow curves (I.-P. curves) were obtained recording flow versus pressure beat by beat on an oscilloscope. Electrical stimulation of the right cervical vagus nerve produced I.-P.-curves, which decayed in less than 3 sec down to a blood pressure of 25 mm Hg (dynamic I.-P.-curve). Static I.-P.-curves were recorded by reducing blood pressure within 1 to 2 min to the same pressure level. The following results were obtained:

A unique dynamic I.-P.-curve, which follows the power functionI=a·Pn exists for each level of arterial mean pressure i.e. “myogenic” vascular tone.

An increase of arterial mean pressure (i.e. “myogenic” vascular tone) decreases the exponentn and increases the coefficienta of the power function.

The static I. P.-curve, which runs parallel to the pressure axis above 90 mm Hg is actually composed of a family of different dynamic I.-P.-curves.

The kidney resistance vessels are rather distensible. The pressure-dependent increase of “myogenic” vascular tone, which developes at perfusion pressures above 55 mm Hg, decreases the vessel distensibility.

A change of mean perfusion pressure causes the kidney resistance vessels to shift from one to another dynamic I.-P.-curve without altering mean blood flow.

Key words

Blood Flow Velocity Renal Artery Blood Pressure Vessel Distensibility Autoregulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bayliss, W. M.: On the local reactions of the arterial wall to changes of internal pressure. J. Physiol. (Lond.)28, 220 (1902).Google Scholar
  2. 2.
    Burton, A. C.: On the physical equilibrium of small blood vessels. Amer. J. Physiol.164, 319 (1951).Google Scholar
  3. 3.
    Burton, A. C.: Physical principles of circulatory phenomena: The equilibria of the heart and blood vessels. In: Handbook of Physiology, sect. 2, circulation, vol. I, pp. 85 to 106. Washington 1962.Google Scholar
  4. 4.
    Davignon, J., Lorenz, R. R., Shepherd, J. T.: Response of human umbilical artery to changes in transmural pressure. Amer. J. Physiol.209, 51 (1965).Google Scholar
  5. 5.
    Fleisch, A.: Die relative Überlegenheit der rhythmischen Durchströmungsart bei überlebenden Organen als Zeichen aktiver Fördertätigkeit der Arterien. Pflügers Arch. ges. Physiol.174, 177 (1919).Google Scholar
  6. 6.
    —: Der Einfluß rhythmischer Druckschwankungen auf die Widerstandsverhältnisse im Gefäßsystem. Pflügers Arch. ges. Physiol.178, 31 (1920).Google Scholar
  7. 7.
    Folkow, B.: Role of the nervous system in the control of vascular tone. Circulation21, 760 (1960).Google Scholar
  8. 8.
    —: Description of the myogenic hypothesis. Circulat. Res.15 (Suppl. I), 1 (1964).Google Scholar
  9. 9.
    —, Löfving, B.: The distensibility of the systemic resistance blood vessels. Acta physiol. scand.38, 37 (1957).Google Scholar
  10. 10.
    Forster, R. P., Maes, I. P.: Effect of experimental neurogenic hypertension on renal blood flow and glomerular filtration rates in intact denervated kidneys of unanesthetized rabbits with adrenal glands demedullated. Amer. J. Physiol.150, 534 (1947).Google Scholar
  11. 11.
    Green, H. D., Lewis, R. N., Nickerson, N. D., Heller, L.: Blood flow, peripheral resistance and vascular tonus, with observations on relationship between blood flow and cutaneous temperatures. Amer. J. Physiol.141, 518 (1944).Google Scholar
  12. 12.
    Grupp, G., Heimpel, H., Hierholzer, K.: Über die Autoregulation der Nierendurchblutung. Pflügers Arch. ges. Physiol.269, 149 (1959).Google Scholar
  13. 13.
    Hinshaw, L. B., Day, S. B., Carlson, C. H.: Tissue pressure and critical closing pressure in the dog kidney. Amer. J. Physiol.196, 1132 (1959).Google Scholar
  14. 14.
    Johnson, P. C.: Autoregulatory responses of cat mesenteric arterioles measured in vivo. Circulat. Res.22, 199 (1968).Google Scholar
  15. 15.
    Jones, R. D., Berne, R. M.: Local regulation of blood flow in skeletal muscle. Circulat. Res.15 (Suppl. I), 30 (1964).Google Scholar
  16. 16.
    Kenner, Th., Ono, K.: The low frequency input impedance of the renal artery. Pflügers Arch.324, 155 (1971).Google Scholar
  17. 17.
    Kirchheim, H.: Effect of common carotid occlusion on arterial blood pressure and on kidney blood flow in unanesthetized dogs. Pflügers Arch.306, 119 (1969).Google Scholar
  18. 18.
    —, Gross, R.: Das Verhalten der Nierendurchblutung und des Nierenumfangs bei Blutdrucksteigerungen durch doppelseitigen Carotisverschluß oder Schrittmachertachykardie. Untersuchungen zur Autoregulation der Nierendurchblutung am wachen Hund. Pflügers Arch.320, 79 (1970).Google Scholar
  19. 19.
    ——: Hemodynamics of the carotid sinus reflex elicited by bilateral carotid occlusion in the conscious dog. Effect of α- or β-adrenergic blockade on the reflex response. Pflügers Arch.327, 203 (1971).Google Scholar
  20. 20.
    Kirchheim, H., Gross, R.: The pressure-flow-relationship of the autoregulating kidney vasculature evaluated from beat by beat impedance loops in the conscious dog. Proc. Int. Union Physiol. Sci.9, 305 (1971).Google Scholar
  21. 21.
    Laux, L.: Über den Anteil der Kapazitäts- und der Widerstandsänderungen der Lungenbahn an den respiratorischen Schwankungen der Stromstärke. Pflügers Arch. ges. Physiol.224, 110 (1930).Google Scholar
  22. 22.
    Marshall, R. J., Wang, Y., Semler, H. J., Shepherd, J. T.: Flow, pressure and volume relationship in the pulmonary circulation during exercise in normal dogs and dogs with divided left pulmonary artery. Circulat. Res.9, 53 (1961).Google Scholar
  23. 23.
    Mc. Donald, D. A.: Regional pulse-wave velocity in the arterial tree. J. appl. Physiol.24, 73 (1968).Google Scholar
  24. 24.
    Monnier, M.: Erregungsleitung in der Arterienwand. Helv. physiol. pharmacol. Acta1, 249 (1943).Google Scholar
  25. 25.
    Noble, M. I. M.: The contribution of blood momentum to left ventricular ejection in the dog. Circulat. Res.23, 663 (1968).Google Scholar
  26. 26.
    Ochwadt, B.: Zur Selbststeuerung des Nierenkreislaufs. Pflügers Arch. ges. Physiol.262, 207 (1956).Google Scholar
  27. 27.
    Ono, H., Inagaki, K., Hashimoto, K.: A pharmacological approach to the nature of the autoregulation of renal blood flow. Jap. J. Physiol.16, 625 (1966).Google Scholar
  28. 28.
    Ritter, E. R.: Pressure-flow-relations in the kidney. Allegal effects of pulse pressure. Amer. J. Physiol.168, 480 (1952).Google Scholar
  29. 29.
    Rothe, C. F., Nash, F. D., Thompson, D. E.: Patterns in autoregulation of renal blood flow in the dog. Amer. J. Physiol.220, 1621 (1971).Google Scholar
  30. 30.
    Selkurt, E. E.: The relationship of renal blood flow to effective arterial pressure in the intact kidney of the dog. Amer. J. Physiol.147, 537 (1946).Google Scholar
  31. 31.
    —: Der Nierenkreislauf. Klin. Wschr.33, 359 (1955).Google Scholar
  32. 32.
    Semple, S. Y. G., de Wardener, H. E.: Effect of increased renal venous pressure on circulatory autoregulation of isolated dog kidneys. Circulat. Res.7, 643 (1959).Google Scholar
  33. 33.
    Shipley, R. E., Study, R. S.: Changes in renal blood flow, extraction of inulin, glomerular filtration rate, tissue pressure and urine flow with acute alterations of renal artery blood pressure. Amer. J. Physiol.167, 676 (1951).Google Scholar
  34. 34.
    Smith, H. W.: The kidney, structure and function in health and disease. New York: Oxford University Press 1951.Google Scholar
  35. 35.
    Sparks, H. V.: Effect of quick stretch on isolated vascular smooth muscle. Circulat. Res.15 (Suppl. I), 254 (1964).Google Scholar
  36. 36.
    —, Bohr, D. F.: Effects of stretch on passive tension and contractility of isolated vascular smooth muscle. Amer. J. Physiol.202, 835 (1962).Google Scholar
  37. 37.
    Stainsby, W. N.: Autoregulation of blood flow in skeletal muscle during increased metabolic activity. Amer. J. Physiol.202, 273 (1962).Google Scholar
  38. 38.
    Thurau, K.: Renal hymodynamics. Amer. J. Med.36, 698 (1964).Google Scholar
  39. 39.
    —, Kramer, K.: Weitere Untersuchungen zur myogenen Natur der Autoregulation des Nierenkreislaufs. Pflügers Arch.269, 77 (1959).Google Scholar
  40. 40.
    ——, Brechtelsbauer, H.: Die Reaktionsweise der glatten Gefäßmuskulatur der Nierengefäße auf Dehnungsreize und ihre Bedeutung für die Autoregulation des Nierenkreislaufs. Pflügers Arch. ges. Physiol.268, 188 (1959).Google Scholar
  41. 41.
    Wacholder, K.: Haben die rhythmischen Spontankontraktionen der Gefäße einen nachweislichen Einfluß auf den Blutstrom? Pflügers Arch. ges. Physiol.190, 222 (1921).Google Scholar
  42. 42.
    Wagner, R.: Über die Beziehungen zwischen Pulmonalisdruck und Minutenvolumen. Z. Biol.25 (1928).Google Scholar
  43. 43.
    Waugh, W. H., Shanks, R. G.: Cause of genuine autoregulation of the renal circulation. Circulat. Res.8, 871 (1960).Google Scholar
  44. 44.
    Wetterer, E., Kenner, Th.: Grundlagen der Dynamik des Arterienpulses, p. 304. Berlin-Heidelberg-New York: Springer 1968.Google Scholar
  45. 45.
    Wezler, K., Sinn, W.: Das Strömungsgesetz des Blutkreislaufs. Aulendorf i. Württ.: Editio Cantor K.G. 1953.Google Scholar
  46. 46.
    Yamada, S. I., Åström, A.: Critical closing pressure and vasomotor tone in the hindlimb and kidney of the cat. Amer. J. Physiol.196, 213 (1959).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • H. Kirchheim
    • 1
  • R. Gross
    • 1
  • B. Keintzel
    • 1
  1. 1.I. Physiologisches Institut der Universität HeidelbergHeidelbergGermany

Personalised recommendations