Pflügers Archiv

, Volume 329, Issue 1, pp 34–58 | Cite as

Measurement of the glomerular filtration pressure from sieving data for macromolecules

  • P. P. Lambert
  • J. P. Gassée
  • A. Verniory
  • P. Ficheroulle


Equations describing restricted filtration and diffusion of molecules in solution through porous membranes, macromolecular gels and capillary walls have been formulated by Pappenheimer; Renkin; and Landis and Pappenheimer. These formulations allow to calculate the radius of pores,r, (supposed cylindrical) and their total area per unit of path length:\(\frac{{Ap}}{{\Delta x}}\).

In this study, they have been applied to characterize the glomerular sieve, starting from sieving data for PVP125I.

From the mean values forr and\(\frac{{Ap}}{{\Delta x}}\), supposing the membrane isoporous, the effective glomerular filtration pressure (GFP) was derived, applying Poiseuille's law.

\(\overline {{\text{GFP}}} \) was 30(±2.2) mm Hg in dogs (n=20), and 19.6(±1.9) in humans (n=11).

The isoporous model however does not account for the passage in the urine of comparatively large amounts of molecules with a radius higher than 41 Å.

Assuming a lognormal distribution of pore radii allows a quite satisfactory adjustment of calculated and experimental values for sieving coefficients in a larger range of molecular radii (23 to 79 Å).

This assumption necessitates to compute the value for GFP simultaneously to those characterizing the distribution (median and standard deviation). The values for GFP obtained by this method are slightly lower than [27.1(±2.8) mm Hg], but closely correlate with, those derived supposing the membrane isoporous in dogs. In humans\(\overline {{\text{GFP}}} \) was 11.7(±1.7) mm Hg. However the sieving coefficients higher than 0.65 have to be discarded from the calculations on which rests the choice of the final value for\(\overline {{\text{GFP}}} \). The reasons for the discrepancies between experimental and calculated values for sieving coefficients close to 1 are discussed by light of recent studies on sieving processes and membrane permeability.


Kidney (Physiology) Glomerulus (Filtration Rate or Permeability) Membranes (Physiology) Capillaries Permeability Macromolecular Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackers, G. K.: Molecular exclusion and restricted diffusion processes in molecular sieve chromatography. Biochemistry3, 723–730 (1964).Google Scholar
  2. 2.
    Arturson, G.: Glomerular permeability to dextrans. In: Capillary permeability, pp. 520–530. (A. Benzon Symposium) Ed. C. Crone and N. A. Lassen. Copenhagen: Munksgaard 1970.Google Scholar
  3. 3.
    —, Groth, T., Grotte, G.: Human glomerular membrane porosity and filtration pressure. Dextran clearance data analysed by theoretical models. Clin. Sci.40, 137–158 (1971).Google Scholar
  4. 4.
    —, Wallenius, G.: The renal clearance of dextran of different molecular sizes in normal humans. Scand. J. clin. Lab. Invest.16, 81–86 (1964).Google Scholar
  5. 5.
    Berglund, F., Engberg, A., Persson, E., Ulfendahl, H.: Renal clearances of labelled inulin (Inulin-carboxyl-14C, Inulin-methoxy-3H) and a polyethylene glycol (PEG 1000) in the rat. IVth Int. Congress of Nephrology, Stockholm, 1969. Abstracts p. 5.Google Scholar
  6. 6.
    Cameron, J. S.: The clinical significance of glomerular permeability studies. Proc. roy. Soc. Med.59, 512–515 (1966).Google Scholar
  7. 7.
    Crone, Chr.: Capillary permeability: Techniques and problems. In: Capillary Permeability (A. Benzon Symposium II), pp. 15–31. Ed. C. Crone and N. A. Lassen. Copenhagen: Munksgaard 1970.Google Scholar
  8. 8.
    Durbin, R. P.: Osmotic flow of water across permeable cellulose membranes. J. gen. Physiol.44, 315–326 (1960).Google Scholar
  9. 9.
    Ericsson, J. L. E.: Fine structural basis for hemoglobin filtration by glomerular capillaries. Nephron5, 7–23 (1960).Google Scholar
  10. 10.
    Farquhar, M. G., Wissig, S. L., Palade, G. E.: Glomerular permeability. I. Ferritin transfer across the normal glomerular capillary wall. J. exp. Med.113, 47–65 (1961).Google Scholar
  11. 11.
    Gassée, J. P., Askenasi, R. Ficheroulle, P., Lambert, P. P.: Hemodynamic changes and renal permeability to PVP125I macromolecules. IVth Int. Congress of Nephrology, Stockholm, 1969. Free Communications p. 6.Google Scholar
  12. 12.
    Gertz, K. H., Mangos, J. A., Braun, G., Pagel, H. D.: Pressure in the glomerular capillaries of the rat kidney and its relation to arterial blood pressure. Pflügers Arch. ges. Physiol.288, 369–374 (1966).Google Scholar
  13. 13.
    Graham, R. C., Karnovski, M. J.: Glomerular permeability: ultrastructural studies, peroxydases as protein tracers. J. exp. Med.124, 1123–1133 (1966).Google Scholar
  14. 14.
    Granath, K. A., Flodin, P.: Fractionation of dextran by the gel filtration method. Makromoleculare Chem.48, 160–171 (1961).Google Scholar
  15. 15.
    Gregoire, F.: Excrétion de l'ovalbumine marquée à l'131I chez le chien normal. Arch. intern. Physiol.68, 633–655 (1960).Google Scholar
  16. 16.
    Gregoire, F., Lambert, P. P.: The biosynthesis of a labelled Bence Jones protein and its glomerular permeability in the normal dog. Clin. Sci. 243–248 (1963).Google Scholar
  17. 17.
    Hardwicke, J.: Estimation of renal permeability to protein on sephadex G 200. Clin. chim. Acta.12, 89–96 (1965).Google Scholar
  18. 18.
    —, Hulme, B., Jones, J. H., Ricketts, C. R.: Measurement of glomerular permeability to polydisperse radioactively labelled macromolecules in normal rabbits. Clin. Sci.34, 505–514 (1968).Google Scholar
  19. 19.
    Hecht, G., Scholtan, W.: Über die Ausscheidung von PVP durch die normale Niere. Z. ges. exp. Med.130, 577–603 (1959).Google Scholar
  20. 20.
    Hoops, L., Kuhn, H., Huber, W., Eckert, L.: Ermittlung der äußeren Abmessungen statistisch geknäuelter Fadenmoleküle durch Ausmessung makroscopischer Modelle. J. Polymer. Sci.20, 101–113 (1956).Google Scholar
  21. 21.
    Hulme, B., Hardwicke, J.: The measurement of renal permeability using labelled macromolecules. Proc. roy. Soc. Med.59, 509–512 (1966).Google Scholar
  22. 22.
    ——: Human glomerular permeability to macromolecules in health and disease. Clin. Sci.34, 515–529 (1968).Google Scholar
  23. 23.
    Karnovsky, M. J., Venkatachalam, M. A., Graham, R. C., Jr., Cotran, R. S.: Ultrastructural basis of glomerular permeability to macromolecules. In: Proc. IVth Int. Congr. Nephrology Stockholm, 1969, vol. 1, p. 81–82. Basel: Karger 1970.Google Scholar
  24. 24.
    Kefalides, N. A.: The chemical basis for the structure and function of basement membranes. Proc. IVth Congress of the int. Diabetes Feder. Stockholm, 1967, p. 610.Google Scholar
  25. 25.
    —: Comparative biochemistry of mammalian basement membranes. Chemistry and Molecular biology of the intercellular matrix, vol. 1, p. 535. Ed. E. Balazs. New York: Acad. Press 1970.Google Scholar
  26. 26.
    Lambert, P. P., Gassée, J. P., Askenasi, R.: La mesure de la perméabilité glomérulaire aux grosses molécules. Actualités Néphrologiques de l'Hôpital Necker, pp. 248–261. Paris: Ed. Médicales Flammarion 1968.Google Scholar
  27. 27.
    Lambert, P. P., Gassée, J. P., Askenasi, R.: La perméabilité du rein aux macromolécules. Physiopathologie de la protéinurie. In: Acquisitions récentes de physiopathologie rénale, pp. 181–214. Liège: Desoer 1968).Google Scholar
  28. 28.
    ——— Ficheroulle, P., Fafchamps, R., Verniory, A.: La perméabilité glomérulaire aux macromolécules. Bull. Acad. roy. Méd. Belg.10, 91–119 (1970).Google Scholar
  29. 29.
    — Gregoire, F.: Hémodynamique glomérulaire et excrétion de l'hémoglobine. Arch. intern. Physiol.63, 7–34 (1955).Google Scholar
  30. 30.
    ——, Malmendier, C.: La perméabilité glomérulaire aux substances protéiques. Rev. franç. Étud. clin. biol.2, 15–21 (1957).Google Scholar
  31. 31.
    ——— Vanderveiken, F., Gueritte, G.: Recherches sur le mécanisme de l'albuminurie. Bull. Acad. roy. Méd. Bel.22, 524–601 (1957).Google Scholar
  32. 32.
    Lambert, P. P., Hulme, B., Gassée, J. P., Askenasi, R., Ficheroulle, P., Fafchamps, R., Verniory, A.: Physiological basis for glomerular sieving of macromolecules. IV th Int. Congress of Nephrology, Stockholm, 1969.Google Scholar
  33. 33.
    Landis, E. M., Pappenheimer, J. R.: Exchange of substances through capillary walls. In: Hamilton: Handbook of Physiology. Circulation II, p. 961. American Physiological Society, N. Y. Baltimore: Williams and Wilkins Co. 1963.Google Scholar
  34. 34.
    Leyssac, P. P., Bojesen, E.: Interdependence between glomerular filtration and tubular reabsorption in the process of proximal salt and water transport. Proc. of the 2nd Int. Congress Nephrology, p. 110. Basel: Karger 1967.Google Scholar
  35. 35.
    Mogensen, C. E.: The glomerular permeability determined by dextran clearance using sephadex gel filtration. Scand. J. clin. Lab. Invest.21, 77–82 (1968).Google Scholar
  36. 36.
    Monke, J. V. Yuile, C. L.: The renal clearance of hemoglobin in the dog. J. exp. Med.72, 149–165 (1940).Google Scholar
  37. 37.
    Pappenheimer, J. R.: Über die Permeabilität der Glomerulum Membranen in der Niere. Klin. Wschr.33, 362–365 (1955).Google Scholar
  38. 38.
    —: Osmotic reflection coefficients in capillary membranes. In: Capillary Permeability (A. Benzon Symposium II). Ed. C. Crone and N. A. Lassen. Copenhagen: Munksgaard 1970.Google Scholar
  39. 39.
    — Renkin, E. M., Borrero, L.: Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Amer. J. Physiol.167, 13–46 (1951).Google Scholar
  40. 40.
    Renkin, E. M.: Filtration, diffusion and molecular sieving through porous cellulose membranes. J. gen. Physiol.38, 225–243 (1954).Google Scholar
  41. 41.
    —: Permeability and molecular size in peripheral and glomerular capillaries. In: Capillary permeability (A. Benzon Symposium II), pp. 554–547. Ed. C. Crone and N. A. Lassen. Copenhagen: Munksgaard 1970.Google Scholar
  42. 42.
    Renkin, E. M., Garlick, D. G.: Transcapillary exchange of large molecules between plasma and lymph. In: Capillary permeability (A. Benzon Symposium II), pp. 553–559. Ed. C. Crone and N. A. Lassen. Copenhagen: Munksgaard 1970.Google Scholar
  43. 43.
    —, Pappenheimer, J. R.: Wasserdurchlässigkeit und Permeabilität der Capillarwände. Ergebn. Physiol.49, 59–126 (1957).Google Scholar
  44. 44.
    Roe, J. H., Epstein, J. H., Goldstein, N. D.: A photometric method for the determination of inulin in plasma and urine. J. biol. Chem.178, 839 (1949).Google Scholar
  45. 45.
    Scholtan, W.: Beziehung zwischen der Größe von PVP-Molekülen und ihrer Permeabilität durch die Glomerulum-Membranen der Niere. Z. ges. exp. Med.130, 556–576 (1959).Google Scholar
  46. 46.
    Smith, H. W., Finkelstein, N., Aliminosa, L., Crawford, B., Graber, M.: The renal clearances of substituted hippuric acid derivatives and other aromatic acids in dog and man. J. clin. Invest.24, 388–404 (1945).Google Scholar
  47. 47.
    Solomon, A. K.: Characterization of biological membranes by equivalent pores. J. gen. Physiol.51, 335–364 (1968).Google Scholar
  48. 48.
    Staverman, A. J.: The theory of measurement of osmotic, pressure. Rec. Trav. chim. Pays-Bas70, 344–352 (1951).Google Scholar
  49. 49.
    Venkatachalam, M. A., Cotran, R. S., Karnovski, M. J.: An ultrastructural study of glomerular permeability using catalase and peroxydase as tracer protein. J. exp. Med.132, 1153–1167 (1970).Google Scholar
  50. 50.
    Verniory, A., Gassée, J. P., Ficheroulle, P., Lambert, P. P.: Analyse biomathématique d'un problème de physiologie rénale: la perméabilité glomérulaire aux macromolécules. J. Urol. Néphrol. (sous presse).Google Scholar
  51. 51.
    Wallenius, G.: Renal clearance of dextrane as a measure of glomerular permeability. Acta Soc. Med. upsalien., Suppl.4 (1954).Google Scholar
  52. 52.
    Winne, D.: Die Kapillarpermeabilität hochmolekularer Substanzen. Pflügers Arch. ges. Physiol.283, 119–136 (1965).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • P. P. Lambert
    • 1
    • 2
  • J. P. Gassée
    • 1
    • 2
  • A. Verniory
    • 1
    • 2
  • P. Ficheroulle
    • 1
    • 2
  1. 1.Laboratory for Experimental MedicineBrussels UniversityBrussels
  2. 2.Queen Elisabeth Medical FoundationBrugmann HospitalBrussels

Personalised recommendations