Advertisement

Pflügers Archiv

, Volume 306, Issue 2, pp 103–118 | Cite as

Micropuncture studies on the influence of antidiuretic hormone on tubular fluid reabsorption in rats with hereditary hypothalamic diabetes insipidus

  • J. Schnermann
  • H. Valtin
  • K. Thurau
  • W. Nagel
  • M. Horster
  • H. Fischbach
  • M. Wahl
  • G. Liebau
Article

Summary

Micropuncture studies were carried out on rats with hereditary hypothalamic diabetes insipidus, in order to measure net sodium and water reabsorption in proximal convolutions and short loops of Henle during water diuresis and ADH-induced antidiuresis. Intravenous infusion of 0.15 mU ADH per minute reduced urine flow from 74.5 μl per kidney per minute to 10.8 μl, and increased urine osmolality from 117 to 605 mOsm/kg. These changes could be reversed by stopping ADH.

ADH did not alter the fractional reabsorption of fluid or the reabsorptive capacity for sodium in the proximal tubules. Nor did it change glomerular filtration rates of single superficial nephrons or of the entire kidney.

Fractional reabsorption of the glomerular filtrate up to the early distal convolution was significantly higher (82.0%) in water diuresis than in antidiuresis (74.4%). Since this reabsorption remained unchanged in the proximal convolutions, the decreased reabsorption during antidiuresis must have occurred in the short loops. Fractional reabsorption of sodium up to the early distal tubule was essentially identical during water diuresis and antidiuresis, indicating that ADH does not enhance urinary concentration by increasing the reabsorption of sodium from short loops.

Key-Words

Hereditary Diabetes Insipidus Proximal Convolution Loops of Henle ADH 

Schlüsselwörter

Hereditärer Diabetes Insipidus Proximales Konvolut Henle'sche Schleife ADH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davis, B. B., F. G. Knox, andR. W. Berliner: The effect of vasopressin on proximal tubule sodium reabsorption in the dog. Amer. J. Physiol.212, 1361 (1967).Google Scholar
  2. 2.
    Führ, J., J. Kaczmarczyk u.C. D. Krüttgen: Eine einfache Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin. Wschr.33, 729 (1955).Google Scholar
  3. 3.
    Gertz, K. H., G. C. Kennedy u.K. J. Ullrich: Mikropunktionsuntersuchungen über die Flüssigkeitsrückresorption aus einzelnen Tubulusabschnitten bei Wasserdiurese (Diabetes insipidus). Pflügers Arch. ges. Physiol.278, 513 (1964).Google Scholar
  4. 4.
    Gottschalk, C. W., andM. Mylle: Micropuncture studies of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis. Amer. J. Physiol.196, 927 (1959).Google Scholar
  5. 5.
    Harrington, A. R., andH. Valtin: Impaired urine concentration after vasopressin and its gradual correction in hypothalamic diabetes insipidus. J. clin. Invest.47, 502 (1968).Google Scholar
  6. 6.
    Hilger, H. H., J. D. Klümper u.K. J. Ullrich: Wasserrückresorption und Ionentransport durch die Sammelrohrzellen der Säugetierniere. Pflügers Arch. ges. Physiol.267, 218 (1958).Google Scholar
  7. 7.
    Leaf, A.: Transepithelial transport and its hormonal control in toad bladder. Ergebn. Physiol.56, 216 (1965).Google Scholar
  8. 8.
    Malnic, G., R. M. Klose, andG. Giebisch: Micropuncture study of renal potassium excretion in the rat. Amer. J. Physiol.206, 674 (1964).Google Scholar
  9. 9.
    Mertz, D. P., u.H. Sarre: Polyfructosan-S: Eine neue inulinartige Substanz zur Bestimmung des Glomerulumfiltrats und des physiologisch aktiven extrazellulären Flüssigkeitsvolumens beim Menschen. Klin. Wschr.41, 868 (1963).Google Scholar
  10. 10.
    Schnermann, J.: Microperfusion study of single short loops of Henle in rat kidney. Pflügers Arch. ges. Physiol.300, 255 (1968).Google Scholar
  11. 11.
    Thorn, N. A.: The influence of the neurohypophysial hormones and similar polypeptides on the kidney. In: Handbuch Exptl. Pharmakol., S. 23. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  12. 12.
    Ullrich, K. J., G. Rumrich u.G. Fuchs: Wasserpermeabilität und transtubulärer Wasserfluß corticaler Nephronabschnitte bei verschiedenen Diuresezuständen. Pflügers Arch. ges. Physiol.280, 99 (1964).Google Scholar
  13. 13.
    Valtin, H.: Sequestration of urea and nonurea solutes in renal tissues of rats with hereditary hypothalamic diabetes insipidus: effects of vasopressin and dehydration on the countercurrent mechanism. J. clin. Invest.45, 337 (1966).Google Scholar
  14. 14.
    —: Hereditary hypothalamic diabetes insipidus in rats (Brattleboro strain). A useful experimental model. Amer. J. Med.42, 814 (1967).Google Scholar
  15. 15.
    —, andH. A. Schroeder: Familial hypothalamic diabetes insipidus in rats (Bratteboro strain). Amer. J. Physiol.206, 425 (1964).Google Scholar
  16. 16.
    Wiederholt, M., H. Stolte, J. P. Brecht u.K. Hierholzer: Mikropunktionsuntersuchungen über den Einfluß von Aldosteron, Cortison und Dexamethason auf die renale Natriumresorption adrenalektomierter Ratten. Pflügers Arch. ges. Physiol.292, 316 (1966).Google Scholar
  17. 17.
    Wirz, H.: Druckmessungen in Kapillaren und Tubuli der Niere. Helv. physiol. pharmacol. Acta13, 42 (1955).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • J. Schnermann
    • 1
  • H. Valtin
    • 1
  • K. Thurau
    • 1
  • W. Nagel
    • 1
  • M. Horster
    • 1
  • H. Fischbach
    • 1
  • M. Wahl
    • 1
  • G. Liebau
    • 1
  1. 1.Physiologisches Institut der Universität MünchenMünchen 15

Personalised recommendations