Pflügers Archiv

, Volume 302, Issue 2, pp 166–191 | Cite as

Funktionelle und morphologische Untersuchungen am proximalen und distalen Konvolut der Rattenniere zur Methode der gespaltenen Ölsäule (Split-Oil Droplet Method)

  • M. Wiederholt
  • K. H. Langer
  • W. Thoenes
  • K. Hierholzer


Öltropfenmethode proximales und distales Tubuluskonvolut Ultrastruktur der Niere Natrium- und Flüssigkeitsresorption Adrenalektomie 

Functional and morphologic investigation of proximal and distal convolutions of rat kidney under the influence of the split-oil droplet method


Micropuncture experiments have been carried out in proximal and distal convolutions of the rat kidney in order to test the reliability of the split-oil droplet method.

  1. 1.

    Light- and electronmicroscopic results: In castor oil filled segments a sufficient blockade is achieved, as judged from the compression of the brush border. In the test segments, interposed between two oil filled segments which are injected with ferritin containing saline, the tubular epithelium and especially the luminal brush border exhibit a normal histology. The tight junctions are intact and pinocytosis is indicated by ferritin resorption. Only in very few instances were oil droplets found to adhere to the brush border of the test segment, sometimes forming circumscript deposits protruding towards the cells. In such areas mechanical lesions of the cell membrane were only very rarely observed.

    In the proximal and distal convolutions of adrenalectomized rats the same experimental procedure did not lead to differences in the morphology of the epithelium.

  2. 2.

    Physiological data:

    1. a)

      Half time of volume reabsorption was unchanged when the split-oil droplet procedure was applied repeatedly to the same tubular segment.

    2. b)

      Intraluminal application of KCN (10−3–10−2 Mol/l) inhibited reabsorption of NaCl and fluid out of the test segment.

    3. c)

      Addition of the non-permeating polyethyleneglycol to the test solution prolongedt1/2 to infinity.

    4. d)

      In experimental diabetes insipidus half time of fluid reabsorption was greatly increased in the distal convolution, but could be normalized by intravenous injection of vasopressin. This was true even when the tubular epithelium was in contact with castor oil for more than 60 min prior to the administration of the hormone.


    From the results obtained in this and earlier studies it is concluded that contact with castor oil and tubular dilatation (to the extent that occurs during the procedure of the split-oil droplet method) does not damage tubular epithelium to a measureable degree as judged both by functional and morphological criteria. This holds also for adrenalectomized rats.



Split-Oil Droplet Method Proximal and Distal Convolution Ultrastructure of Kidney Na- and Fluid Reabsorption Adrenalectomy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baumann, K., H. Holzgreve, F. Kolb, R. Peters, G. Rumrich u.K. J. Ullrich: Unidirektionale Flüsse für Na24, K42, Ca45, Cl38, Br82 und J131 im proximalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol.289, 77 (1966).Google Scholar
  2. 2.
    Brunner, F. P., F. C. Rector jr., andD. W. Seldin: Mechanism of glomerulotubular balance. II. Regulation of proximal tubular reabsorption by tubular volume, as studied by stopped-flow microperfusion. J. clin. Invest.45, 603 (1966).Google Scholar
  3. 3.
    Chertik, R. J., W. H. Hulet, andB. Epstein: Effects of cyanide, amytal, and DNP on renal sodium adsorption. Amer. J. Physiol.211, 1379 (1966).Google Scholar
  4. 4.
    Farquhar, M. G., andG. E. Palade. Junctional complexes in various epithelia. J. Cell Biol.17, 375 (1962).Google Scholar
  5. 5.
    Fordtran, J. S., F. C. Rector Jr., M. F. Ewton, N. Soter, andJ. Kinney: Permeability characteristics of the human small intestine. J. clin. Invest.44, 1935 (1965).Google Scholar
  6. 6.
    Fujimoto, M., F. D. Nash, andR. H. Kessler: Effects of cyanide,Q o, and dinitrophenol on renal sodium reabsorption and oxygen consumption. Amer. J. Physiol.206, 1327 (1964).Google Scholar
  7. 7.
    Gertz, K. H.: Direct measurement of the transtubular flux of electrolytes and non-electrolytes in the intact rat kidney. XXII. Internatl. Congr. Physiol. Sci., Excerpta Medica17, 370 (1962).Google Scholar
  8. 8.
    —: Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol.276, 336 (1963).Google Scholar
  9. 9.
    G. C. Kennedy, andK. J. Ullrich: Mikropunktionsuntersuchungen über die Flüssigkeitsresorption aus den einzelnen Tubulusabschnitten bei Wasserdiurese (Diabetes insipidus). Pflügers Arch. ges. Physiol.278, 513 (1964).Google Scholar
  10. 10.
    Giebisch, G., R. M. Klose, G. Malnic, W. J. Sullivan, andE. E. Windhager: Sodium movement across single perfused proximal tubules of rat kidneys. J. gen. Physiol.47, 1175 (1964).Google Scholar
  11. 11.
    Hasylett, J. P., M. Kashgarian, andF. H. Epstein: Changes in proximal and distal tubular reabsorption produced by rapid expansion of extracellular fluid. J. clin. Invest.46, 1254 (1967).Google Scholar
  12. 12.
    Hegel, U., E. Frömter u.T. Wick: Der elektrische Wandwiderstand des proximalen Konvolutes der Rattenniere. Pflügers Arch. ges. Physiol.294, 274 (1967).Google Scholar
  13. 13.
    Herken, H., G. Senft, W. Schwarz u.H. J. Merker: Struktur und Funktion der Glomerula nach Einwirkung von Glucocorticoiden bei der Aminonucleosidnephrose. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak.245, 289 (1963).Google Scholar
  14. 14.
    Hierholzer, K., W. Wiederholt, H. Holzgreve, G. Giebisch, R. M. Klose, andE. E. Windhager: Micropuncture study of renal transtubular concentration gradients of sodium and potassium in adrenalactomized rats. Pflügers Arch. ges. Physiol.285, 193 (1965).Google Scholar
  15. 15.
    ——, u.H. Stolte: Der Einfluß hypertoner NaCl-Infusionen auf die renale Na-Resorption intakter und adrenalektomierter Ratten. Pflügers Arch. ges. Physiol.283, R 71 (1965).Google Scholar
  16. 16.
    ———: Hemmung der Natriumresorption im proximalen und distalen Konvolut adrenalektomierter Ratten. Pflügers Arch. ges. Physiol.291, 43 (1966).Google Scholar
  17. 17.
    Holzgreve, H., A. Frick, G. Rumrich, M. Wiederholt u.K. J. Ullrich: Wirkungsweise von Diuretica auf den transtubulären Transport von Natriumchlorid. 3. Symposion der Gesellschaft für Nephrologie (1964), Normale und pathologische Funktionen des Nierentubulus, S. 147.Google Scholar
  18. 18.
    Horster, M., W. Nagel, J. Schnermann u.K. Thurau: Zur Frage einer direkten Angiotensinwirkung auf die Natriumresorption im proximalen Tubulus und in der Henle'schen Schleife der Rattenniere. Pflügers Arch. ges. Physiol.292, 118 (1966).Google Scholar
  19. 19.
    Kramer, K., u.K. J. Ullrich: O2-Sättigung und Hb-Gehalt des Capillarblutes der Nierenrinde. Pflügers Arch. ges. Physiol.267, 251 (1958).Google Scholar
  20. 20.
    Landwehr, D. M., R. M. Klose, andG. Giebisch: Renal tubular sodium and water reabsorption in the isotonic sodium chloride-loaded rat. Amer. J. Physiol.212, 1237 (1967).Google Scholar
  21. 21.
    Langer, K. H., W. Thoenes u.M. Wiederholt: Licht- und elektronen-mikroskopische Untersuchungen am proximalen Tubuluskonvolut der Rattenniere nach intraluminaler Ölinjektion. Pflügers Arch.302, 149–165 (1968).Google Scholar
  22. 22.
    Maunsbach, A. B.: Absorption of ferritin by rat kidney proximal tubule cells. Electron microscopic observations of the initial uptake phase in cells of microperfused single proximal tubules. J. Ultrastruct. Res.16, 1 (1966).Google Scholar
  23. 23.
    McEvoy, J., G. Hollmann u.G. Senft: Einfluß von Mineralocorticoiden auf die tubuläre Rückgewinnung von Na-Ionen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak.250, 318 (1965).Google Scholar
  24. 24.
    Miller, F.: Hemoglobin absorption by the cells of the proximal convoluted tubule in mouse kidney. J. biophys. biochem. Cytol.8, 689 (1960).Google Scholar
  25. 25.
    Rector, F. C., jr.,F. P. Brunner, andD. W. Seldin: Mechanism of glomerulotubular balance. I. Effect of aortic constriction and elevated ureteropelvic pressure on glomerular filtration rate, fractional reabsorption, transit time, and tubular size in the proximal tubule of the rat. J. clin. Invest.45, 590 (1966).Google Scholar
  26. 26.
    ——,J. C. Sellman, andD. W. Seldin: Pitfalls in the use of micropuncture for the localization of diuretic action. Ann. N. Y. Acad. Sci.139, 400 (1966).Google Scholar
  27. 27.
    —,J. C. Sellmann, M. Martinez-Maldonado, andD. W. Seldin: The mechanism of suppression of proximal tubular reabsorption by saline infusions. J. clin. Invest.46, 47 (1967).Google Scholar
  28. 28.
    Schwarz, W., u.J. Wolff: Veränderungen am Hauptstück und peritubulären Kapillaren der Rattenniere nach Hypophysektomie. Elektronenmikroskopische Beobachtungen. Z. Zellforsch.71, 441 (1966).Google Scholar
  29. 29.
    Shipp, J. C., I. B. Hanenson, E. E. Windhager, H. J. Schatzmann, G. Whittembury, H. Yoshimura, andA. K. Solomon: Single proximal tubules of the necturus kidney. Methods for micropuncture and microperfusion. Amer. J. Physiol.195, 563 (1958).Google Scholar
  30. 30.
    Sonnenberg, H., P. Deetjen u.W. Hampel: Methode zur Durchströmung einzelner Nephronabschnitte. Pflügers Arch. ges. Physiol.278, 669 (1964).Google Scholar
  31. 31.
    Steinhausen, M.: Messungen des tubulären Harnstromes und der tubulären Reabsorption unter erhöhtem Ureterdruck. Intravitalmikroskopische Untersuchungen an der Nierenrinde von Ratten. Pflügers Arch. ges. Physiol.298, 105 (1967).Google Scholar
  32. 32.
    Stolte, H., J. P. Brecht, M. Wiederholt u.K. Hierholzer: Einfluß von Adrenalektomie und Glucocorticoiden auf die Wasserpermeabilität corticaler Nephronabschnitte der Rattenniere. Pflügers Arch. ges. Physiol.299, 99 (1968).Google Scholar
  33. 33.
    —,M. Wiederholt u.K. Hierholzer: Resorptionshemmung im proximalen Konvolut der Säugetierniere nach Adrenalektomie und ihre Beeinflussung durch Steroidhormone. Aktuelle Probleme der Nephrologie. Hrsg.F. Krück, S. 251. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  34. 34.
    Strickler, J. C., andR. H. Kessler: Effects of certain inhibitors on renal excretion of salt and water. Amer. J. Physiol.205, 117 (1963).Google Scholar
  35. 35.
    Thoenes, W.: Mikromorphologie des Nephron nach temporärer Ischämie. Zwangl. Abh. aus den Gebieten der normal. u. pathol. Anat., Heft 15. Stuttgart: Thieme 1964.Google Scholar
  36. 36.
    —,K. H. Langer u.M. Wiederholt: Resorption von Ferritin im proximalen Konvolut der Rattenniere (nach intratubulärer Applikation durch Mikropunktion). Klin. Wschr.44, 1379 (1966).Google Scholar
  37. 37.
    Thurau, K., u.P. Deetjen: Kinematographische Untersuchungen am Warmblüternephron. Nachrichten der Akad, d. Wiss. in Göttingen2, 27 (1961).Google Scholar
  38. 38.
    Ullrich, K. J.: Renal transport of sodium. Int. Congr. of Nephrol., Washington1, 48 (1967).Google Scholar
  39. 39.
    —,G. Rumrich u.G. Fuchs: Wasserpermeabilität und transtubulärer Wasserfluß corticaler Nephronabschnitte bei verschiedenen Diuresezuständen. Pflügers Arch. ges. Physiol.280, 99 (1964).Google Scholar
  40. 40.
    Vander, A. J., R. L. Malvin, W. S. Wilde, J. Lapides, L. P. Sullivan, andV. M. McMurray: Effects of adrenalectomy and aldosterone on proximal and distal tubular sodium reabsorptiom. Proc. Soc. exp. Biol. (N. Y.)99, 323 (1958).Google Scholar
  41. 41.
    Wiederholt, M., undK. Hierholzer: Wirkung von Actinomycin D auf den transepithelialen Na-Transport. V. Symposion der Gesellschaft für-Nephrologie, Lausanne 1967 (im Druck).Google Scholar
  42. 42.
    —,H. Stolte, J. P. Brecht undK. Hierholzer: Mikropunktionsuntersuchungen über den Einfluß von Aldosteron, Cortison und Dexamethason auf die renale Natriumresorption adrenalektomierter Ratten. Pflügers Arch. ges. Physiol.292, 316 (1966).Google Scholar
  43. 43.
    —, u.B. Wiederholt: Wirkung eines synthetischen Corticosteroids (Dexamethason) auf die Wasserpermeabilität des distalen Konvolutes adrenal-ektomierter Ratten. Pflügers Arch. ges. Physiol.294, 30 (1967).Google Scholar
  44. 44.
    Windhager, E. E., andG. Gliebisch: Comparison of short-circuit current and net water movement in single perfused proximal tubules of rat kidneys. Nature (Lond.)191, 1205 (1961).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • M. Wiederholt
    • 1
    • 2
  • K. H. Langer
    • 1
    • 2
  • W. Thoenes
    • 1
    • 2
  • K. Hierholzer
    • 1
    • 2
  1. 1.Physiologisches Institut der Freien Universität BerlinBerlinDeutschland
  2. 2.Pathologisches Institut der Universität WürzburgWürzburgDeutschland

Personalised recommendations