Skip to main content
Log in

Post-ischemic O2-availability and O2-consumption of the isolated perfused brain of the dog

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

In 25 experiments isolated canine brains perfused with blood from donor dogs were subjected to complete ischemias of 1, 5, 10, 20 and 30 min. The perfusion of the brain was performed from the internal maxillary arteries. The perfusion pressure was recorded in the circle of Willis. Cerebral blood flow and venous O2-saturation were monitored continuously. ArterialpO2,pCO2 and pH as well as brain temperature were kept constant. The ECoG before complete ischemia was not pathologically altered and the cerebral vasculature showed autoregulatory behaviour. The mean O2-availability was 8.1±1.4 ml/100g·min and the mean O2-consumption was 3.4±0.4 ml/100 g·min.

  1. 1.

    All ischemias were followed by an increase of O2-availability due to reactive hyperemia. The excess O2-availability was correlated to the duration of complete oerebral ischemia.

  2. 2.

    After the 5 and 10 min ischemias a significant increase of cerebral O2-consumption was found which lasted up to the 4th min of reperfusion.

  3. 3.

    After the prolonged ischemias there was no longer any correlation between the O2-availability and the O2-consumption of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ames, A. III, Wright, L., Kowoda, M., Thurston, J. M., Majno, G.: Cerebral ischemia. II The No-Reflow Phenomenon. Amer. J. Path.52, 437–453 (1968).

    Google Scholar 

  2. Baez, S., Hershey, S. G., Rovenstine, E. A.: Vasotropic substances in blood in intestinal ischemic shock. Amer. J. Physiol.200, 1245–1250 (1961).

    Google Scholar 

  3. Bayliss, W. M.: On the local reaction of the arterial wall to changes of internal pressure. J. Physiol. (Lond.)28, 220–231 (1902).

    Google Scholar 

  4. Berne, R. M.: Cardiac nucleotides in hypoxia: role in regulation of coronary blood flow. Amer. J. Physiol.204, 317–322 (1963).

    Google Scholar 

  5. Betz, E., Kozak, R.: Der Einfluß der Wasserstoffionenkonzentration der Gehirnrinde auf die Regulation der corticalen Durchblutung. Pflügers Arch. ges. Physiol.293, 56–67 (1967).

    Google Scholar 

  6. Cantu, R. C., Ames, A. III.: Experimental prevention of cerebral vasculature obstruction produced by ischemia. J. Neurosurg.30, 50–54 (1969).

    Google Scholar 

  7. Chiang, J., Kowada, M., Ames, A., III, Wright, R. L., Majno, G.: Cerebral ischemia. III. Vascular changes. Amer. J. Path.52, 455–476 (1968).

    Google Scholar 

  8. Cohen, M. M.: The effect of anoxia on the chemistry and morphology of cerebral cortex slices in vitro. J. Neurochem.9, 337–344 (1962).

    Google Scholar 

  9. Cohen, P. J., Alexander, S. C., Smith, Th. C., Reivich, M., Wollman, H.: Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man. J. appl. Physiol.23, 183–189 (1967).

    Google Scholar 

  10. Crawford, D. G., Fairchild, H. M., Guyton, A. C.: Oxygen lack as a possible cause of reactive hyperemia. Amer. J. Physiol.197, 613–616 (1959).

    Google Scholar 

  11. Deuticke, B., Gerlach, E.: Abbau freier Nucleotide in Herz, Skeletmuskel, Gehirn und Leber der Ratte bei Sauerstoffmangel. Pflügers Arch. ges. Physiol.292, 239–254 (1966).

    Google Scholar 

  12. Diemer, K.: Über die Sauerstoffdiffusion im Gehirn. II. Die Sauerstoffdiffusion bei O2-Mangelzuständen. Pflügers Arch. ges. Physiol.185, 109–118 (1965).

    Google Scholar 

  13. Ekström-Jodal, B.: On the relation between blood pressure and blood flow in the canine brain with particular regard to the mechanism responsible for cerebral blood flow autoregulation. Acta physiol. scand. Suppl.350, 1–28 (1970).

    Google Scholar 

  14. Folkow, B.: Intravascular pressure as a factor regulating the tone of the small blood vessels. Acta physiol. scand.17, 289–310 (1949).

    Google Scholar 

  15. Grunewald, W.: Digitale Simulation eines räumlichen Diffusionsmodelles der O2-Versorgung biologischer Gewebe. Pflügers Arch.309, 266–284 (1969).

    Google Scholar 

  16. Guyton, A. C., Ross, J. M., Carrier, O., Walker, J. M.: Evidence for tissue oxygen demand as the major factor causing autoregulation. Circulat. Res.14, 60–68 (1964).

    Google Scholar 

  17. Häggendal, E., Löfgren, J., Nilsson, N. J., Zwetnow, N. N.: Effects of varied cerebrospinal fluid pressure on cerebral blood flow in dogs. Acta physiol. scand.79, 262–271 (1970).

    Google Scholar 

  18. Hager, M.: Electron microscopic changes in brain tissue of Syrian Hamsters following acute hypoxia. Aerospace Med.31, 379–387 (1960).

    Google Scholar 

  19. Hills, C. P.: Ultrastructural changes in the capillary bed of the rat cerebral cortex in anoxic-ischemic lesions. Amer. J. Path.44, 531–551 (1964).

    Google Scholar 

  20. Hilton, S. M., Lewis, G. P.: Functional vasodilation in the submandibular salivary gland. Brit. med. Bull.13, 189–196 (1957).

    Google Scholar 

  21. Hirsch, H., Doose, E., Grote, G., Jarai, S., Kristen, H.: Über den Einfluß der Halsmarkdurchtrennung auf den cerebralen Sauerstoffverbrauch beim Hund in Barbituratnarkose. Pflügers Arch. ges. Physiol.271, 727–731 (1960).

    Google Scholar 

  22. —, Krenkel, W., Schneider, M., Schnellbächer, F.: Der Sauerstoffverbrauch des Warmblütergehirns bei Sauerstoffmangel durch Ischämie und der Mechanismus der Mangelwirkung. Pflügers Arch. ges. Physiol.261, 402–408 (1955).

    Google Scholar 

  23. Ingvar, D. H.: Correlation between cerebral function and cerebral blood flow and its disappearance following anoxia. In: Pharmakologie der lokalen Gehirndurchblutung. München: Dr. E. Barnaschewski 1969.

    Google Scholar 

  24. Kobold, E. E., Thal, A. P.: Quantitation and identification of vasoactive substances liberated during various types of experimental and clinical intestinal ischemia. Surg. Gynec. Obstet.117, 315–322 (1963).

    Google Scholar 

  25. Kogure, K., Scheinberg, P., Reinmuth, O. M., Fujishima, M., Busto, R.: Mechanisms of cerebral vasodilation in hypoxia. J. appl. Physiol.29, 223–229 (1970).

    Google Scholar 

  26. Merker, G.: Ultrastrukturveränderungen motorischer Vorderhornzellen des Kaninchens unter abgestufter Ischämie. Z. Zellforsch.95, 568–593 (1969).

    Google Scholar 

  27. Patterson, G. C.: The role of intravascular pressure in the causation of reactive hyperemia in the human forearm. Clin. Sci.15, 17–25 (1956).

    Google Scholar 

  28. Rapela, C. E., Green, H. D.: Autoregulation of canine cerebral blood flow. Circulat. Res.15, Suppl. 1, 205–212 (1964).

    Google Scholar 

  29. Thews, G.: Die Sauerstoffdiffusion im Gehirn. Pflügers Arch. ges. Physiol.271, 197–226 (1960).

    Google Scholar 

  30. Van Harreveld, A.: Changes in volume of cortical neuronal elements during asphyxiation. Amer. J. Physiol.191, 233–242 (1957).

    Google Scholar 

  31. Webster, H. de E., Ames, A.: Reversible and irreversible changes in the fine structure of nervous tissue during oxygen and glucose deprivation. J. Cell Biol.26, 885–909 (1965).

    Google Scholar 

  32. Yonce, L. R., Hamilton, W. F.: Oxygen consumption in skeletal muscle during reactive hyperemia. Amer. J. Physiol.197, 190–192 (1959).

    Google Scholar 

  33. Zimmer, R., Lang, R., Oberdörster, G.: Post-ischemic reactive hyperemia of the isolated perfused brain of the dog. Pflügers Arch.328, 332–343 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially reported at the XXV International Congress of Physiological Sciences, Munich, 1971; Proceedings of the International Union of Physiological Sciences, Volume IX, 335 (1971).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, R., Zimmer, R. & Oberdörster, G. Post-ischemic O2-availability and O2-consumption of the isolated perfused brain of the dog. Pflugers Arch. 334, 103–113 (1972). https://doi.org/10.1007/BF00586784

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586784

Key words

Navigation