Pflügers Archiv

, Volume 313, Issue 3, pp 252–270 | Cite as

Time course of development of transtubular sodium concentration differences in proximal surface tubules of the rat kidney

Micropuncture experiments in intact and adrenalectomized rats
  • H. Stolte
  • M. Wiederholt
  • G. Fuchs
  • K. Hierholzer
Article

Summary

Int the proximal and distal surface tubules isotonic Na reabsorption (Φ Naout) is impaired by adrenalectomy. In the present experiments the time course of development of transtubular Na concentration differences (Na) P −(Na) TF was studied in the proximal convolution.
  1. 1.

    Na concentration was measured in free flow mannitol diuresis. Endproximal (Na) P −(Na) TF averaged 23.0±0.5 meq/l after 8.5±0.6 sec (controls) and 15.2±1.7 meq/l after 13.6±0.5 sec (adrenalectomized rats).

     
  2. 2.

    In modified stopped flow experiments tubular fluid, aspirated at the beginning of the proximal convolution in mannitol diuresis, was injected between two oil columnes and reaspirated after 28–36 sec of contact time. (Na) P −(Na) TF was 30.1±1.4 meq/l and 24.7±2.5 meq/l in the controls and adrenalectomized rats respectively.

     
  3. 3.

    (Na) P −(Na) TF in steady state (i. e. after 60 sec of contact time) were 33.6±0.8 meq/l and 41.8±1.2 meq/l in the 2 groups. From the results we derive at the conclusion that in adrenal insufficiency proximal sodium reabsorption is not only affected by an impairment of the intrinsic transport capacity but also by a proportional decrease of leak permeability for sodium.

     
  4. 4.

    Due to an increased transit time in adrenal insufficiency fractional reabsorption of sodium and of potassium was unchanged in the proximal convolution. Therefore it seems likely that the same compensation mechanism as for sodium holds for potassium and the reabsorption of potassium is impaired in adrenal insufficiency also in the proximal convolution.

     

Key-Words

Na Transport Na Permeability K Transport Adrenal Insufficiency Micropuncture Techniques 

Schlüsselwörter

Na-Transport Na-Permeabilität K-Transport Nebenniereninsuffizienz Mikropunktionstechniken 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldamus, C. A., Hierholzer, K., Rumrich, G., Stolte, H., Uhlich, E., Ullrich, K. J., Wiederholt, M.: Natriumtransport in den proximalen Tubuli und den Sammelrohren bei Variation der Natriumkonzentration im umgebenden Interstitium. Pflügers Arch.310, 354 (1969).Google Scholar
  2. 2.
    Bloomer, H. A., Rector, F. C., Jr., Seldin, D. W.: The mechanism of potassium reabsorption in the proximal tubule of the rat. J. clin. Invest.42, 277 (1963).Google Scholar
  3. 3.
    Cortney, A.: Renal tubular transfer of water and electrolytes in adrenalectomized rats. Amer. J. Physiol.216, 589 (1969).Google Scholar
  4. 4.
    Dempster, W. J., Eggleton, M. G., Shuster, S.: The effect of hypertonic infusions on glomerular filtration rate and glucose reabsorption in the kidney of the dog. J. Physiol. (Lond.)132, 213 (1956).Google Scholar
  5. 5.
    Dirks, J. J., Cirksena, W. J., Berliner, R. W.: Micropuncture study of the effect of various diuretics on sodium reabsorption by the proximal tubulus of the dog. J. clin. Invest.45, 1875 (1966).Google Scholar
  6. 6.
    Führ, J., Kaczmarczyk, J., Krüttgen, C. D.: Eine einfache colorimetrische Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetiker. Klin. Wschr.33, 729 (1955).Google Scholar
  7. 7.
    Gertz, K. H., Brandis, M., Braun-Schubert, G., Boylan, J. W.: The effect of saline infusion and hemorrhage on glomerular filtration pressure and single nephron filtration rate. Pflügers Arch.310, 193 (1969).Google Scholar
  8. 8.
    Goldberg, M., Mc Curdy, D. K., Ramirez, M. A.: Differences between saline and mannitol diuresis in hydropenic man. J. clin. Invest.44, 182 (1965).Google Scholar
  9. 9.
    Gottschalk, C. W.: Micropuncture studies of tubular function in the mammalian kidney. Physiologist4, 35 (1961).Google Scholar
  10. 10.
    Hayes, C. P., Mayson, J. S., Owen, E. E., Robinson, R. R.: A micropuncture evaluation of renal ammonia excretion in the rat. Amer. J. Physiol.207, 77 (1964).Google Scholar
  11. 11.
    Heller, J., Vostal, J.: The plasma sodium concentration: a factor influencing the osmolality of the fluid of the renal medullary tissue. Physiol. bohemoslov.16, 418 (1967).Google Scholar
  12. 12.
    Hilger, A. H., Klümper, J. D., Ullrich, K. J.: Nierenanalytische Untersuchungen über die Wasser- und Natriumrückresorption an den Sammelrohren der Säugetierniere. Pflügers Arch. ges. Physiol.266, 57 (1958).Google Scholar
  13. 13.
    Hierholzer, K.: Analyse der Natrium-Transportstörung in der Niere adrenalektomierter Ratten. Untersuchungen am Einzelnephron. Habilitationsschrift, Berlin 1964.Google Scholar
  14. 14.
    —, Wiederholt, M., Holzgreve, H., Giebisch, G., Klose, R. M., Windhager, E. E.: Micropuncture study of renal transtubular concentration gradients of sodium and potassium in adrenalectomized rats. Pflügers Arch. ges. Physiol.285, 193 (1965).Google Scholar
  15. 15.
    ——, Stolte, H.: Hemmung der Natriumresorption im proximalen und distalen Konvolut adrenalektomierter Ratten. Pflügers Arch. ges. Physiol.291, 43 (1966).Google Scholar
  16. 16.
    Kessler, R. H.: Acute effects of brief ureteral stasis on urinary and renal papillary chloride concentration. Amer. J. Physiol.199, 1215 (1960).Google Scholar
  17. 17.
    Knox, F. G., Fleming, J. S., Rennie, D. W.: Effects of osmotic diuresis on sodium reabsorption and oxygen consumption of kidney. Amer. J. Physiol.210, 75 (1966).Google Scholar
  18. 18.
    Malnic, G., Klose, R. M., Giebisch, G.: Micropuncture study of renal potassium excretion in the rat. Amer. J. Physiol.206, 674 (1964).Google Scholar
  19. 19.
    Malvin, R., Wilde, W. S.: Washout of renal countercurrent Na gradient by osmotic diuresis. Amer. J. Physiol.197, 177 (1959).Google Scholar
  20. 20.
    Müller, P.: Experiments on current flow and ionic movements in single myelinated nerve fibers. Exp. Cell Res., Suppl.5, 118 (1958).Google Scholar
  21. 21.
    Murayama, Y., Suzuki, A., Tadokoro, M., Sakai, T.: Microperfusion of Henle's loop in the kidney of adrenalectomized rat. Jap. J. Parmacol.18, 518 (1968).Google Scholar
  22. 22.
    Ramsay, J. A., Brown, R. H. J.: Simplified apparatus and procedure for freezing-point determinations upon small volumes of fluid. J. Sci. Instrum.32, 372 (1955).Google Scholar
  23. 23.
    Rector, F. C., Jr., Bloomer, H. A., Seldin, D. W.: Proximal tubular reabsorption of potassium during mannitol diuresis in rats. J. Lab. clin. Med.63, 100 (1964).Google Scholar
  24. 24.
    Shipp, J. G., Hanenson, J. B., Windhager, E. E., Schatzmann, H. J., Whittembury, G., Yoshimura, H., Solomon, A. K.: Single proximal tubules of the nectures kidney. Methods for micropuncture and microperfusion. Amer. J. Physiol.195, 563 (1958).Google Scholar
  25. 25.
    Steinhausen, M.: Eine Methode zur Differenzierung proximaler und distaler Tubuli der Nierenrinde von Ratten in vivo und ihre Anwendung zur Bestimmung tubulärer Strömungsgeschwindigkeiten. Pflügers Arch. ges. Physiol.277, 23 (1963).Google Scholar
  26. 26.
    Stolte, H., Brecht, J. P., Wiederholt, M., Hierholzer, K.: Einfluß von Adrenalektomie und Glucocorticoiden auf die Wasserpermeabilität corticaler Nephronabschnitte der Rattenniere. Pflügers Arch. ges. Physiol.299, 99 (1968).Google Scholar
  27. 27.
    Stolte, H., de Santo, N., Hierholzer, K.: The effect of adrenalectomy on the development of proximal and distal transtubular concentration gradients for sodium. (Micropuncture experiments in rat kidneys). IVth Int. Congr. Nephrol., Stockholm, p. 234 (1969).Google Scholar
  28. 28.
    —, Wiederholt, M., Hierholzer, K.: Resorptionshemmung im proximalen Konvolut der Säugetiere nach Adrenalektomie und ihre Beeinflussung durch Steroidhormone. In: Aktuelle Probleme der Nephrologie, S. 521. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  29. 29.
    Uhlich, E., Baldamus, C. A., Ullrich, K. J.: Einfluß von Aldosteron auf den Natriumtransport in den Sammelrohren der Säugetiernieren. Pflügers Arch.308, 111 (1969).Google Scholar
  30. 30.
    Ullrich, K. J., Schmidt-Nielsen, B., O'Dell, R., Pehling, G., Gottschalk, C. W., Lassiter, W. E., Mylle, M.: Micropuncture study of composition of proximal and distal tubular fluid in rat kidney. Amer. J. Physiol.204, 527 (1963).Google Scholar
  31. 31.
    Wiederholt, M., Hierholzer, K.: Wirkung von Actinomycin D auf den transepithelialen Natrium-Transport. In: Progress in Nephrology 5th Symposium „Gesellschaft für Nephrologie”, Lausanne (in press).Google Scholar
  32. 32.
    —, Stolte, H., Brecht, J. P., Hierholzer, K.: Mikropunktionsuntersuchungen über den Einfluß von Aldosteron, Cortison und Dexamethason auf die renale Natriumresorption adrenalektomierter Ratten. Pflügers Arch. ges. Physiol.292, 316 (1966).Google Scholar
  33. 33.
    —, Wiederholt, B.: Der Einfluß von Dexamethason auf die Wasser-und Elektrolytausscheidung adrenalektomierter Ratten. Pflügers Arch.302, 57 (1968).Google Scholar
  34. 34.
    Windhager, E. E., Giebisch, G.: Micropuncture study of renal tubular transfer of sodium chloride in the rat. Amer. J. Physiol.200, 581 (1961).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • H. Stolte
    • 1
    • 2
  • M. Wiederholt
    • 1
    • 2
  • G. Fuchs
    • 1
    • 2
  • K. Hierholzer
    • 1
    • 2
  1. 1.Institute of Clinical PhysiologyFree University of BerlinBerlinGermany
  2. 2.Department of MedicineJohannes Gutenberg UniversityMainzGermany

Personalised recommendations