Advertisement

Pflügers Archiv

, Volume 322, Issue 1, pp 39–46 | Cite as

Potassium in the rat kidney proximal tubules in situ: Determination by K+-selective liquid ion-exchange microelectrodes

  • R. N. Khuri
  • S. K. Agulian
  • W. M. Wise
Article

Summary

Intraluminal K+ concentration in the rat kidney proximal tubule was measured in situ by means of K+-selective liquid ion-exchange microelectrodes. By virtue of its independence of sampling techniques, the in situ measurement is more accurate in dealing with fluids flowing through microtubular structures. Using K+-selective liquid ion-exchange microelectrodes it was observed that the K+ concentration falls along the length of the proximal convoluted tubule. The mean (TF/P) K concentration ratio of 0.89±0.01 for the first convolution is significantly greater (p<0.001) than the mean ratio of 0.81±0.01 for the last convolution of the proximal tubule. A description is given of the construction and calibration of the K+-selective microelectrode with a new liquid ion-exchanger.

Key-Words

Potassium Microelectrode Liquid Ion-Exchange Microelectrode Proximal Tubule Potassium 

Schlüsselwörter

Kalium-Mikroelektrode Flüssigkeits-Ionenaustausch-Mikroelektrode Kalium in proximalen Tubuli 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloomer, H. A., Rector, F. C., Jr., Seldin, D. W.: The mechanism of potassium reabsorption in the proximal tubule of the rat. J. clin. Invest.42, 277 (1963).Google Scholar
  2. 2.
    Khuri, R. N., Flanigan, W. J., Oken, D. E.: Potassium in proximal tubule fluid of rats and necturus measured with glass electrodes. J. appl. Physiol.21, 1568 (1966).Google Scholar
  3. 3.
    —, Goldstein, D. A., Maude, D. L., Edmonds, C., Solomon, A. K.: Single proximal tubules of the necturus kidney: Na and K determination by glass electrodes. Amer. J. Physiol.204, 743 (1963).Google Scholar
  4. 4.
    Litchfield, J. B., Bott, P. A.: Micropuncture study of renal excretion of water, K, Na, and Cl in the rat. Amer. J. Physiol.203, 667 (1962).Google Scholar
  5. 5.
    Malnic, G., Klose, R. M., Giebisch, G.: Micropuncture study of renal potassium excretion in the rat. Amer. J. Physiol.206, 674 (1964).Google Scholar
  6. 6.
    Marsh, D. G., Ullrich, K. J., Rumrich, G.: Micropuncture analysis of the behavior of potassium ions in rat renal cortical tubules. Arch. ges. Physiol.277, 107, (1963).Google Scholar
  7. 7.
    Settzo, R. J., Wise, W. M.: Liquid organic ion-exchanger electrode with organophilic-hydrophobic membrane. U.S. Patent No. 3,448,032 (1969).Google Scholar
  8. 8.
    Wise, W. M., Kurey, M. J., Baum, G.: Direct potentiometric measurement of potassium in blood serum with liquid ion-exchange electrode. Clin. Chem.16, 103 (1970).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • R. N. Khuri
    • 1
  • S. K. Agulian
    • 1
  • W. M. Wise
    • 1
    • 2
  1. 1.Department of PhysiologyAmerican University of BeirutBeirutRepublic of Lebanon
  2. 2.Research and Development LaboratoriesCorning Glass WorksCorningUSA

Personalised recommendations