Pflügers Archiv

, Volume 343, Issue 1, pp 79–88 | Cite as

Interaction of H+ and Ca++ in the regulation of local pial vascular resistance

  • E. Betz
  • H. G. Enzenroß
  • V. Vlahov
Article

Summary

Mock CSF of various compositions was injected into the perivascular space of different small pial arteries by means of micropipettes. Acid CSF (pH 6.5) caused local vascular dilatation, as did normal CSF with the addition of EDTA or EGTA. Systemic acidosis caused by CO2 respiration also caused pial vasodilatation. Tiny silver-chloride electrodes were placed directly on the surface of small pial arterioles. Current-constant stimulation with series of DC-impulses (2–5 mA strength, duration 1 ms/imp.; stimulation lasted 10 sec) caused local vasoconstriction of the stimulated vessel. The constricted region of the vessel was of a different shape. Most frequently spindle-shaped constrictions with an extention not exceeding the length of the indifferent electrode were seen. In some cases the constriction was unilaterally placed near the different electrode (100 μm ∅) and in a few cases the constriction was propagated along the whole vessel.

Stimulation after application of acid CSF or during CO2-respiration caused a constrictory action of about the same degree as in normal CSF. The acidotic dilatation, however, remained visible because the resulting vascular diameter after stimulation remained greater than in the controls with normal CSF. In Ca++-free CSF the stimulation elicited a small response and during EGTA no constriction appeared after stimulation.

In CSF with EDTA the constrictory response was distinctly diminished. From the experiments it cannot be excluded that the constriction of pial vessels caused by electrical stimulation is based on another mechanism than that caused by extravascular alkalosis. Ca++ is necessary for both mechanisms.

Key words

Pial Vessels Ca++-Electrical Stimulation pH Cerebral Circulation Smooth Muscles Microperfusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ames, A., Sakanoue, M., Endo, S.: Na, K, Ca, Mg, and Cl concentrations in chorioid plexus fluid and cisternal fluid compared with plasma ultrafiltrate. J. Neurophysiol.27, 672–681 (1964)Google Scholar
  2. 2.
    Betz, E., Heuser, D.: Cerebral cortical flow during changes of acid-base equilibrium of the brain. J. appl. Physiol.23, 726–733 (1967)Google Scholar
  3. 3.
    Betz, E., Kozak, R.: Der Einfluß der Wasserstoffionenkonzentration der Gehirnrinde auf die Regulation der corticalen Durchblutung. Pflügers Arch. ges. Physiol.293, 56–67 (1967)Google Scholar
  4. 4.
    Bozler, E.: Conduction, automaticity and tonus of visceral muscles. Experientia (Basel)4, 213–218 (1948)Google Scholar
  5. 5.
    Delgado, J. M. R.: Electrodes for extracellular recording and stimulation. In: Physical techniques in biological research, Vol. 5, ed. by W. L. Nastuk, p. 93. New York-London: Academic Press 1964Google Scholar
  6. 6.
    Echlin, F. A.: Vasospasm and focal cerebral ischemia. An experimental study. Arch. Neurol. Psychiat., (Chic.)47, 77–96 (1942)Google Scholar
  7. 7.
    Florey, H.: Microscopical observations on the circulation of the blood in the cerebral cortex. Brain48, 44–64 (1925)Google Scholar
  8. 8.
    Furchgott, R. F.: The pharmacology of vascular smooth muscle. Pharmacol. Rev.7, 183–265 (1955)Google Scholar
  9. 9.
    Grün, G., Weder, U., Fleckenstein, A.: The mutual antagonism between H+ and Ca++ ions in the control of vascular tone and autoregulation. Pflügers Arch.335, Suppl., R 10 (1972)Google Scholar
  10. 10.
    Knabe, U., Betz, E.: The effect of varying extracellular K, Mg and Ca on the diameter of pial arterioles. In: Vascular smooth muscle. Ed. E. Betz, pp. 183–185. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  11. 11.
    Lassen, N. A.: Brain extracellular pH, the main factor controlling cerebral blood flow. Scand. J. clin. Lab. Invest.22, 247–251 (1968)Google Scholar
  12. 12.
    Lende, R. A.: Local spasm in cerebral arteries. J. Neurosurg.17, 90–103 (1960)Google Scholar
  13. 13.
    McDowall, D. C., Harper, A. U.: The relationship between blood flow and extracellular pH of the cerebral cortex. In: Blood flow through organs and tissues. Ed. W. H. Bain and A. U. Harper, pp. 261–278. Edinburgh: Livingstone 1968Google Scholar
  14. 14.
    Mrwa, U., Achtig, J., Rüegg, J. C.: pH-Wirkung auf das Actomyosinsystem des Gefäßmuskels. Pflügers Arch.335, Suppl. R 58 (1972)Google Scholar
  15. 15.
    Nagai, T., Prosser, C. L.: Patterns of conduction in smooth muscle. Amer. J. Physiol.204, 910–914 (1963)Google Scholar
  16. 16.
    Pannier, J. C., Weyne, J., Demeester, G., Leusen, J.: Influence of change in the acid-base composition of the ventricular system on cerebral blood flow in cats. Pflügers Arch.333, 337–351 (1972)Google Scholar
  17. 17.
    Peiper, U., Griebel, L., Wende, W.: Activation of vascular smooth muscle of rat aorta by noradrenaline and depolarization: two different mechanisms. Pflügers Arch.330, 74–89 (1971)Google Scholar
  18. 18.
    Ringbom, A.: Complexation in analytical chemistry. New York: Interscience Publishers 1963Google Scholar
  19. 19.
    Riser, M. P.: Les spasmes vasculaires en neurologie. Etude clinique et experimentale. Encephale26, 501–528 (1931)Google Scholar
  20. 20.
    Schädler, M.: Proportionale Aktivierung von ATP-aseaktivität und Kontraktionsspannung durch Ca++-Ionen in isolierten contractilen Strukturen verschiedener Muskelarten. Pflügers Arch. ges. Physiol.296, 70–90 (1967)Google Scholar
  21. 21.
    Vlahov, V., Enzenross, H. G., Betz, E.: Einfluß von Ca++ auf elektrisch bedingte lokale Piagefäßkonstriktion. Pflügers Arch.335, Suppl., R 56 (1972)Google Scholar
  22. 22.
    Waddell, W. J., Bates, R. G.: Intracellular pH. Physiol. Rev.49, 285–329 (1969)Google Scholar
  23. 23.
    Wahl, M., Deetjen, P., Thurau, K., Ingvar, D. H., Lassen, N. A.: Micropuncture evaluation of the importance of perivascular pH for the arteriolar diameter on the brain surface. Pflügers Arch.316, 152–163 (1970)Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • E. Betz
    • 1
  • H. G. Enzenroß
    • 1
  • V. Vlahov
    • 1
  1. 1.Physiologisches Institut, Lehrstuhl IUniversität TübingenGermany

Personalised recommendations