Advertisement

Pflügers Archiv

, Volume 343, Issue 1, pp 11–25 | Cite as

Micropuncture studies after temporary ischemia of rat kidneys

  • Georg M. Eisenbach
  • Michael Steinhausen
Article

Summary

Micropuncture experiments were carried out on rat kidneys subjected to temporary ischemia (TI). Unilateral TI was performed by clamping the blood supply to the left kidney for 60 min. Time period between TI and investigating the kidney ranged from 1 h to 13 days. In another series of experiments blood supply to the left kidney was severely diminished for 24 h by a clip.-39% of animals developed anuria of the experimental kidney; in the other animals, urine flow rate was markedly decreased after TI (P<0.02). Employing the tracer microinjection technique considerable amounts (51%-oliguric kidneys; 17%-nonoliguric kidneys) of14C-labelled inulin injected into a proximal tubule of the damaged kidney were found in the urine of the contralateral kidney indicating backdiffusion of inulin through the damaged tubular epithelium. The amount of inulin recovered from both kidneys was decreased. Backdiffusion of inulin was detectable up to seven days after TI. Under control conditions 2% of inulin injected was found on the contralateral side, inulin recovered from both kidneys being approx. 100%. Dye intensity of Lissamine-green passing through the nephron was decreased noticeably after TI. Proximal tubular diameter and proximal free-flow pressure showed a large variability, the means being not significantly differnt from controls.—The results indicate that the concurrence of at least two factors are involved in the pathogenesis of acute renal damage induced by TI: Backdiffusion of tubular fluid through the damaged tubular epithelium and a decrease of glomerular filtration rate. The measurement of the clearance of inulin in kidneys damaged by ischemia does not represent the actual GFR, but underestimates this value proportionately to the degree of backdiffusion of inulin.

Key words

Renal Micropuncture Temporary Renal Ischemia Tracer Microinjection Technique Acute Renal Failure Tubular Leakage Lissamine Green 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bank, N., Mutz, B. F., Aynedjian, H. S.: The role of “Leakage” of tubular fluid due to mercury poisoning. J. clin. Invest.46, 695–704 (1967)Google Scholar
  2. 2.
    Barenberg, R. L., Solomon, S., Papper, S., Anderson, R.: Clearance and micropuncture study of renal function in mercuric chloride treated rats. J. Lab. clin. Med.72, 473–484 (1968).Google Scholar
  3. 3.
    Baumann, K., Oelert, H., Rumrich, G., Ullrich, K. J.: Ist Inulin zur Messung des Glomeruluminfiltrates beim Warmblüter geeignet? Pflügers Arch. ges. Physiol.282, 238–241 (1965)Google Scholar
  4. 4.
    Biber, T. U. L., Mylle, M., Baines, A. D., Gottschalk, C. W., Oliver, J. R., MacDowell, M. C.: A study by micropuncture and microdissection of acute renal damage in rats. Amer. J. Med.44, 664–705 (1968)Google Scholar
  5. 5.
    Block, M. A., Wakim, K. G., Mann, F. C.: Renal function during stimulation of renal nerves. Amer. J. Physiol.169, 670–677 (1952)Google Scholar
  6. 6.
    Cain, H., Fazekas, St.: Studien über die Folgen einer vorübergehenden experimentellen Nierenischämie. I. Die morphologischen Veränderungen und ihre funktionelle Deutung. Virchows Arch. path. Anat.336, 389–416 (1963)Google Scholar
  7. 7.
    Cain, H., Fazekas, St.: Studien über die Folgen einer vorübergehenden experimentellen II. Die Restitutionsvorgänge an den Tubuli. Virchows Arch. path. Anat.337, 33–52 (1963)Google Scholar
  8. 8.
    Carriere, S., Thorburn, G. D., O'Morchoe, C. C. C., Barger, A. C.: Intrarenal distribution of blood flow in dogs during hemorrhagic hypotension. Circulat. Res.29, 167–179 (1966)Google Scholar
  9. 9.
    Di Bona, G. F., McDonald, F. D., Flamenbaum, W., Dammin, G. J., Oken, D. E.: Maintenance of renal function in salt loaded rats despite severe tubular necrosis induced by HgCl2. Nephron8, 205–220 (1971)Google Scholar
  10. 10.
    Ericcson, J. L. E., Mostofi, F. K., Lundgren, G.: Experimental hemoglobinuric nephropathy. I. Comparative light microscopic, histochemical, and pathophysiologic studies. Virchows Arch., Abt. B Zellpath.3, 181–200 (1969)Google Scholar
  11. 11.
    Flamenbaum, W., McDonald, F. D., Di Bona, G. F., Oken, D. E.: Micropuncture study of renal tubular factors in low dose of mercury poisoning. Nephron8, 221–234 (1971)Google Scholar
  12. 12.
    Flanigan, W. J., Oken, D. E.: Renal micropuncture study of the development of anuria in the rat with mercury-induced acute renal failure. J. clin. Invest.44, 449–457 (1965)Google Scholar
  13. 13.
    Friedman, S. M., Johnson, R. L., Friedman, C. L.: The pattern of recorvery of renal function following renal artery occlusion in the dog. Circulat. Res.2, 231–235 (1954)Google Scholar
  14. 14.
    Gertz, K. H., Brandis, M., Braun-Schubert, G., Boylan, J. W.: The effect of saline infusion and hemorrhage on glomerular filtration pressure and single nephron filtration rate. Pflügers Arch.310, 193–205 (1969)Google Scholar
  15. 15.
    Gottschalk, C. W., Morel, F., Mylle, M.: Tracer microinjection studies of renal tubular permeability. Amer. J. Physiol.209, 173–178 (1965)Google Scholar
  16. 16.
    Grantham, J. J., Burg, M. B.: Effects of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Amer. J. Physiol.211, 255–259 (1966)Google Scholar
  17. 17.
    Henry, L. H., Lane, C. F., Kashgarian, M.: Micropuncture studies of the pathophysiology of acute renal failure in the rat. Lab. Invest.19, 309–314 (1968)Google Scholar
  18. 18.
    Jaenike, J. R.: Micropuncture study of methemoglobin-induced acute renal failure in the rat. J. Lab. clin. Med.73, 459–468 (1969)Google Scholar
  19. 19.
    Koletsky, S.: Effects of temporary interruption of renal circulation in rats. Arch. Path.58, 592–603 (1954)Google Scholar
  20. 20.
    Ljundquist, A., Wagermark, J.: The adrenergic innervation of intrarenal glomerular and extra-glomerular circulatory routes. Nephron7, 218–229 (1970)Google Scholar
  21. 21.
    Marsh, D., Frasier, Ch.: Reliability of inulin for determining volume flow in rat renal cortical tubules. Amer. J. Physiol.209, 283–286 (1965)Google Scholar
  22. 22.
    Neely, W. A., Turner, M. D.: The effect of arteriovenous occlusion of renal blood flow. Surg. Gynec. Obstet.108, 669–672 (1959)Google Scholar
  23. 23.
    Oken, D. E., Arce, M. L., Wilson, D. R.: Glycerol-induced hemoglobinuric acute renal failure in the rat. I. Micropuncture study of the development of oliguria. J. clin. Invest.45, 724–735 (1966)Google Scholar
  24. 24.
    Oken, D. E., Di Bona, G. F., McDonald, F. D.: Micropuncture study of the recovery phase of myohemoglobinuric acute renal failure in the rat. J. clin. Invest.49, 730–737 (1970)Google Scholar
  25. 25.
    Oliver, J., MacDowell, M., Tracy, A.: The pathogenesis of acute renal failure associated with traumatic and toxic injury. Renal ischemia, nephrotoxic damage and the ischemuric episode. J. clin. Invest.30, 1307–1351 (1951)Google Scholar
  26. 26.
    Phillips, R. A., Hamilton, P. B.: Effect of 20, 60 and 120 min of renal ischemia on glomerular and tubular function. Amer. J. Physiol.152, 523–530 (1948)Google Scholar
  27. 27.
    Ponfick, E.: Experimentelle Beiträge zur Lehre der Transfusion. Virchows Arch. path. Anat.62, 272–335 (1875)Google Scholar
  28. 28.
    Richards, A. N.: Direct observations of change in function of the renal tubule caused by certain poisons. Trans. Ass. Amer. Phys.44, 64–67 (1929)Google Scholar
  29. 29.
    Roof, B. S., Lauson, H. D., Bella, S. T., Eder, H. A.: Recovery of glomerular and tubular function, including p-aminohippurate excretion, following two hours of renal artery occlusion in the dog. Amer. J. Physiol.166, 666–688 (1951)Google Scholar
  30. 30.
    Ruiz-Guinazu, A., Coelho, J. B., Paz, R. A.: Methemoglobin-induced acute renal failure in the rat. Nephron4, 257–275 (1967)Google Scholar
  31. 31.
    Schnermann, J.: Microperfusion study of single short loops of henle in rat kidney. Pflügers Arch. ges. Physiol.300, 255–282 (1968)Google Scholar
  32. 32.
    Schnermann, J., Nagel, W., Thurau, K.: Die frühdistale Natriumkonzentration in Rattennieren nach renaler Ischämie und hämorrhagischer Hypotension. Pflügers Arch. ges. Physiol.287, 296–310 (1966)Google Scholar
  33. 33.
    Selkurt, E. E.: Comparison of renal clearance with direct renal blood flow under control conditions and following renal ischemia. Amer. J. Physiol.145, 376–386 (1946)Google Scholar
  34. 34.
    Smith, H. W.: Note on the interpretation of clearance methods in the diseased kidney. J. Clin. Invest.20, 631–635 (1941)Google Scholar
  35. 35.
    Steinhausen, M.: Eine Methode zur Differenzierung proximaler und distaler Tubuli der Nierenrinde von Ratten in vivo und ihre Anwendung zur Bestim. mung tubulärer Strömungsgeschwindigkeiten. Pflügers Arch. ges. Physiol.277, 23–35 (1963)Google Scholar
  36. 36.
    Steinhausen, M.: Messungen des tubulären Harnstromes und der tubulären Resorption unter erhöhtem Ureterdruck. Pflügers Arch. ges. Physiol.298, 105–130 (1967)Google Scholar
  37. 37.
    Steinhausen, M., Eisenbach, G. M., Böttcher, W.: High-frequency microcinematographic measurements on peritubular blood flow under control conditions and after temporary ischemia of rat kidneys. Pflügers Arch.339, 273–288 (1973)Google Scholar
  38. 38.
    Steinhausen, M., Eisenbach, G. M., Galaske, R.: A counter-current system on the surface of the renal cortex of rats. Pflügers Arch.318, 244–258 (1970)Google Scholar
  39. 39.
    Steinhausen, M., Eisenbach, G. M., Helmstädter, V.: Concentration of Lissaminen-gree in proximal tubules of antidiuretic and mercury poisoned rats and the permeability of these tubules. Pflügers Arch.311, 1–15 (1969)Google Scholar
  40. 40.
    Steinhausen, M., Weidinger, H., Ross, H. J., Eisenbach, G. M.: Incident-light microscopy of the renal surface during stimulation of sympathetic renal nerves. Progress in nephrology, ed. by G. Peters and F. Roch-Ramel, pp. 370–374 (1967)Google Scholar
  41. 41.
    Summers, W. K., Jamison, R. L.: The no-reflow phenomenon in renal ischemia. Lab. Invest.25, 635–643 (1971)Google Scholar
  42. 42.
    Thiel, G., McDonald, F. D., Oken, D. E.: Micropuncture studies of the basis for protection of renin depleted rats from glycerol-induced acute renal failure. Nephron7, 67–79 (1970)Google Scholar
  43. 43.
    Thoenes, W.: Micromorphologie des Nephron nach temporärer Ischämie. Zwangl. Abh. Beitr. Norm. Path. Anat., Heft 15. Stuttgart: G. Theime 1964Google Scholar
  44. 44.
    Thurau, K., Schnermann, J.: Die Natriumkonzentration an den Macula densa-Zellen als regulierender Faktor für das Glomerulumfiltrat (Mikropunktionsversuche). Klin. Wschr.43, 410–415 (1965)Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Georg M. Eisenbach
    • 1
  • Michael Steinhausen
    • 1
  1. 1.I. Physiologisches Institut der Universität HeidelbergGermany

Personalised recommendations