Advertisement

Pflügers Archiv

, Volume 323, Issue 2, pp 121–140 | Cite as

Lipid soluble weak organic acid buffers as “substrate” for pancreatic secretion

  • I. Schulz
  • F. Ströver
  • K. J. Ullrich
Article

Summary

The isolated cat pancreas was perfused with a Krebs-Henseleitsolution containing different concentrations of sulfamerazine buffer. Concomitantly the secretory rate, pH value, Cl and total buffer concentration in the secretion were measured. The following were found:
  1. 1.

    The secretory rate dropped to very small values when the bicarbonate buffer was omitted from the perfusate.

     
  2. 2.

    Sulfamerazine can partly replace the CO2-bicarbonate buffer in promoting water and solute secretion in the saline-perfused preparation of the cat's pancreas.

     
  3. 3.

    The secretion of the sulfamerazine buffer depended exclusively on the concentration of its undissociated component in the perfusate.

     

It is concluded that a separation of H+/OH ions takes place presumably at the luminal cell border and that the undissociated form of sulfamerazine can penetrate the cell by ‘nonionic diffusion’. In this way a source of H+ ions is provided which may be used either for H+ transport or for the buffering of OH ions. The process of nonionic diffusion seems to be rate limiting for the buffer secretion, at least when sulfamerazine is offered.

Key-Words

Pancreas Bicarbonate Secretion Buffer Secretion H+ Ion Transport Weak Organic Acids 

Schlüsselwörter

Pankreas Bicarbonatsekretion Puffersekretion H+-Ionentransport schwache organische Säuren 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baumann, K., Oelert, H., Gekle, D.: pH-abhängige Resorption von schwachen organischen Säuren aus dem distalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol.283, R 25 (1965).Google Scholar
  2. 2.
    ——, Sonnenberg, H.: pH-abhängige Diffusion organischer Substanzen im proximalen Konvolut der Rattenniere. In: Normale und pathologische Funktion des Nierentubulus. III. Sympos. Ges. f. Nephrologie, Berlin 1964. Bern: Huber 1965.Google Scholar
  3. 3.
    —, Peters, R., Papavassiliou, F.: Diffusion von Nichtelektrolyten und Berechnung von äquivalenten Porenradien im proximalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol.294, 21 (1967).Google Scholar
  4. 4.
    Beyer, K. H., Russo, H. F., Patch, E. A., Peters, L., Sprague, K. L.: The formation and excretion of acetylated sulfonamides. J. Lab. clin. Med.31, 65 (1946).Google Scholar
  5. 5.
    Birnbaum, D., Hollander, F.: Inhibition of pancreatic secretion by the carbonic anhydrase inhibitor 2-acetylamino-1,3,4-thiadiazole-5-sulfonamide, Diamox (6063). Amer. J. Physiol.174, 191–195 (1953).Google Scholar
  6. 6.
    ——: Relation between bicarbonate concentration and rate of canine pancreatic secretion. Amer. J. Physiol.209, 966–972 (1965).Google Scholar
  7. 7.
    Bratton, C., Marshall, E. K., Jr.: A new coupling component for sulfanilamide determination. J. biol. Chem.128, 537 (1939).Google Scholar
  8. 8.
    Brodsky, W. A., Schilb, T. P.: Mechanism of acidification in turtle bladder. Fed. Proc.26, 1314–1321 (1967).Google Scholar
  9. 9.
    Case, R. M., Harper, A. A., Scratcherd, T.: The relationship between bicarbonate and chloride in pancreatic juice. J. Physiol. (Lond.)182, 49–50 P (1966).Google Scholar
  10. 10.
    ———: Water and electrolyte secretion by the perfused pancreas of the cat. J. Physiol. (Lond.)196, 133–149 (1968).Google Scholar
  11. 11.
    ———: The secretion of electrolytes and enzymes by the pancreas of the anaesthetized cat. J. Physiol. (Lond.)201, 335–348 (1969).Google Scholar
  12. 12.
    ———: Water and electrolyte secretion by the pancreas. In: Exocrine Glands, Proc. of a Sattellite Symp. of the XXIV Intern. Congress of Physiol. Sciences, Ed. Bothelo, S. Y., F. P. Brooks and W. B. Shelly, pp. 39–56. Philadelphia: Univ. of Pensylvania Press 1969.Google Scholar
  13. 13.
    —, Scratcherd, T., Wynne, R. D. A.: The origin and secretion of pancreatic juice bicarbonate. J. Physiol. (Lond.)210, 1–15 (1970).Google Scholar
  14. 14.
    Christodoulopoulos, J. B., Jacobs, W. H., Klotz, A. P.: Action of secretin on pancreatic secretion. Amer. J. Physiol.201, 1020–1024 (1961).Google Scholar
  15. 15.
    Davies, R. E.: Doctoral Thesis. Sheffield: Univ. of Sheffield 1948.Google Scholar
  16. 16.
    Despopoulos, A., Callahan, P. X.: Molecular features of sulfonamide transport in renal excretory process. Amer. J. Physiol.203, 19 (1962).Google Scholar
  17. 17.
    —, Segerfeldt, A.: Efflux of organic acids from rabbit kidney cortex. Amer. J. Physiol.207, 118 (1964).Google Scholar
  18. 18.
    Dreiling, D. A., Janowitz, H. D.: The secretion of electrolytes by the human pancreas. The effect of Diamox, ACTH, and disease. Amer. J. dig. Dis.4, 137–144 (1959).Google Scholar
  19. 19.
    ——, Halpern, M.: The effect of a carbonic anhydrase inhibitor, Diamox, on human pancreatic secretion. Gastroenterology29, 262–279 (1955).Google Scholar
  20. 20.
    Green, H. H., Steinmetz, P. R., Frazier, H. S.: Evidence for proton transport by turtle bladder in presence of ambient bicarbonate. Amer. J. Physiol.218, 845–850 (1970).Google Scholar
  21. 21.
    Grünhagen, H. H., Witt, H. T.: Primary ionic events in the functional membrane of photosynthesis. Z. Naturforsch.25b, 373–386 (1970).Google Scholar
  22. 22.
    Gutman, A. B., Yü, T. F., Sirota, J. H.: A study by simultaneous clearance techniques of salicylate excretion in man. Effect of alkalinization of the urine by bicarbonate administration, effect of probenecid. J. clin. Invest.34, 711 (1955).Google Scholar
  23. 23.
    Hart, W. M., Thomas, J. E.: Bicarbonate and chloride of pancreatic juice secreted in response to various stimuli. Gastroenterology4, 409–420 (1945).Google Scholar
  24. 24.
    Hollander, F., Birnbaum, D.: The role of carbonic anhydrase in pancreatic secretion. Trans. N. Y. Acad. Sci.15, 56–58 (1952).Google Scholar
  25. 25.
    Hubel, K. A.: In vitro rabbit pancreas: effect of temperature on HCO3 , PCO2, pH, and flow. Amer. J. Physiol.212, 101–103 (1967).Google Scholar
  26. 26.
    Janowitz, H. D., Dreiling, D. A.: The pancreatic secretion of fluid and electrolytes. In: Ciba Found. Symp. The exocrine pancreas, Ed. de Reuck, A. V. S., and M. P. Cameron, pp. 115–133. London: Churchill 1962.Google Scholar
  27. 27.
    Knoefel, P. K.: Renal tubular transport of some nitro and amino hippuric acids. Proc. Soc. exp. Biol. (N. Y.)109, 148 (1962).Google Scholar
  28. 28.
    —, Huang, K. C., Jarboe, C. H.: Renal tubular transport and molecular structure in the acetamidobenzoic acids. J. Pharmacol. exp. Ther.134, 266 (1961).Google Scholar
  29. 29.
    ———: Renal disposal of salicyluric acid. Amer. J. Physiol.203, 6 (1962).Google Scholar
  30. 30.
    Maren, T. H.: Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol. Rev.47, 595 (1967).Google Scholar
  31. 31.
    Milne, M. D., Scribner, B. H., Crawford, M. A.: Non-ionic diffusion and the excretion of weak acids and bases. Amer. J. Med.24, 709 (1958).Google Scholar
  32. 32.
    Mitchell, P.: Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Printed Glynn Research Ltd. 1966.Google Scholar
  33. 32a.
    Montal, M., Chance, B., Lee, C. P.: Ion transport and energy conservation in submitochondrial particles. J. Membrane Biol.2, 201–234 (1970).Google Scholar
  34. 33.
    Mudge, G. H., Weiner, I. M.: Renal excretion of weak organic acids and bases. Drugs and Membranes, Vol. 4, p. 157. Oxford-London-New York-Paris: Pergamon Press 1963.Google Scholar
  35. 34.
    Oelert, H., Baumann, K., Gekle, D.: Permeabilitätsmessungen einiger schwacher organischer Säuren aus dem distalen Konvolut der Rattenniere. Pflügers Arch.307, 178–189 (1969).Google Scholar
  36. 35.
    Pak, B. H., Hong, S. S., Pak, H. K., Hong, S. K.: Effects of acetazolamide and acid-base changes on biliary and pancreatic secretion. Amer. J. Physiol.210, 624–628 (1966).Google Scholar
  37. 36.
    Ramsay, J. A., Brown, R. H. J., Croghan, P. C.: Electrometric titration of chloride in small volumes. J. exp. Biol.32, 822 (1955).Google Scholar
  38. 37.
    Rawls, J. A., Jr., Wistrand, P. J., Maren, T. H.: Effects of acid-base changes and carbonic anhydrase inhibition on pancreatic secretion. Amer. J. Physiol.205, 651–657 (1963).Google Scholar
  39. 38.
    Ridderstap, A. S., Bonting, S. L.: The mechanism of exocrine pancreatic secretion. Fed. Proc.27, 834 (1968).Google Scholar
  40. 39.
    ——: Na-K-activated adenosine triphosphatase and pancreatic secretion in the dog. Amer. J. Physiol.216, 547–553 (1969).Google Scholar
  41. 40.
    Rothman, S. S., Brooks, F. P.: Pancreatic secretion in vitro in “Cl-free”, “CO2-free”, and low-Na+ environment. Amer. J. Physiol.209, 790–796 (1965).Google Scholar
  42. 41.
    Rumrich, G., Ullrich, K. J.: The minimum requirements for the maintenance of sodium chloride reabsorption in the proximal convolution of the mammalian kidney. J. Physiol. (Lond.)197, 69–70 P (1968).Google Scholar
  43. 42.
    Schulz, I., Ströver, F., Kasprik, B., Ullrich, K. J.: The action of bicarbonate-CO2-and glycodiazinebuffer on secretion in the cat pancreas. Pflügers Arch.319, R 92 (1970).Google Scholar
  44. 43.
    Schulz, I., Yamagata, A., Weske, M.: Micropuncture studies on the pancreas of the rabbit. Pflügers Arch.308, 277–290 (1969).Google Scholar
  45. 44.
    Solomon, A. K.: Symposium on secretion of electrolytes: Electrolyte secretion in pancreas. Fed. Proc.11, 722–731 (1952).Google Scholar
  46. 45.
    Sonnenberg, H., Baumann, K., Oelert, H.: pH-abhängiger Transport von Sulfamerazin und Harnsäure im proximalen Tubulus der Rattenniere. Pflügers Arch. ges. Physiol.279, R 27 (1964).Google Scholar
  47. 46.
    ———: Nonionic diffusion in rat proximal tubule as a function of lipoid solubility. Physiologist7, 261 (1964).Google Scholar
  48. 47.
    —, Oelert, H., Baumann, K.: Proximal tubular reabsorption of some organic acids in the rat kidney in vivo. Pflügers Arch. ges. Physiol.286, 171 (1965).Google Scholar
  49. 48.
    Still, E. U., Bennet, A. L., Scott, V. B.: A study of the metabolic activity of the pancreas. Amer. J. Physiol.106, 509–523 (1933).Google Scholar
  50. 49.
    Struyvenberg, A., Morrison, R. B., Relman, A. S.: Acid-base behavior of separated canine renal tubule cells. Amer. J. Physiol.214, 1155–1162 (1968).Google Scholar
  51. 50.
    Swanson, C. H.: Micropuncture studies of the electrolyte secretion of the rabbit pancreas in vitro. Abstract: Third International Biophysics Congress of the International Union for Pure and Applied Biophysics, Cambridge, Mass. USA, August 29–September 3, 1969.Google Scholar
  52. 51.
    Ullrich, K. J., Rumrich, G., Radtke, H. W., Klöss, S.: Effect of bicarbonate and other lipid soluble buffers on the isotonic fluid absorption in the proximal tubule of the rat kidney. Pflügers Arch.319, R 72 (1970).Google Scholar
  53. 52.
    Way, L. W., Diamond, J. M.: The effect of secretin on electrical potential differences in the pancreatic duct. Biochim. biophys. Acta (Amst.)203, 298–307 (1970).Google Scholar
  54. 53.
    Weiner, I. M., Mudge, G. H.: Renal tubular mechanisms for excretion of organic acids and bases. Amer. J. Med.36, 743 (1964).Google Scholar
  55. 54.
    —, Washington II, J. A., Mudge, G. H.: On the mechanism of action of probenecid on renal tubular secretion. Bull. Johns Hopk. Hosp.106, 333 (1960).Google Scholar
  56. 55.
    Witt, H. T., Rumberg, B., Junge, W.: Electron transfer, field changes, proton translocation and phosphorylation in photosynthesis. Coupling in the thylacoid membrane. In: 19. Colloquium der Gesellschaft für Biologische Chemie. April 1968 in Mosbach/Baden, pp. 262–306. Berlin-Heidelberg-New York: Springer 1968.Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • I. Schulz
    • 1
  • F. Ströver
    • 1
  • K. J. Ullrich
    • 1
  1. 1.Max-Planck-Institut für BiophysikFrankfurt a.M.Germany

Personalised recommendations