Pflügers Archiv

, Volume 321, Issue 2, pp 121–132 | Cite as

Utilization of carbohydrates and free fatty acids by the gastrocnemius of the dog during long lasting rhythmical exercise

  • Hj. Hirche
  • D. Grün
  • W. Waller


Utilization of carbohydrates and free fatty acids (FFA) has been investigated in gastrocnemii of dogs during long lasting isotonic rhythmical exercise induced by supramaximal stimulation of the sciatic nerve. Uptake or output of gases and substrates was determined according to the Fick principle. The first measurements were done at about 2 min after the beginning of work when blood flow has reached a steady state, and the latest at about 100 min after the beginning of exercise.

During the first 7 min when the work performed exceeded 5 kg/100g×min and O2 consumption exceeded 11 ml/100g×min, uptake of arterial glucose and FFA was low, accounting for less than 40% of the total O2 consumption. Since the RQ values at the same time were about 1.0, glycogen must have been oxidized as the major aerobic energy source.

About 13 min after the beginning of exercise, the work the muscles could perform declined to about half of the initial value and remained so for the following 90 min. During this time the oxygen extraction ratio of FFA was about 50% and of arterial glucose was 40–50%, while the RQ value was about 0.8.

During initial strong exercise an output of lactic acid (LA) of about 10 mg/100 g×min was measured. With the decrease of work as a consequence of fatigue, LA output became negligible, and in many experiments small amounts of LA were taken up by the working gastrocnemii.

It is concluded that glycogen is the major aerobic energy source for strong muscular exercise which cannot be substituted for by the oxidation of arterial glucose or FFA.


Skeletal Muscle Metabolism Glucose Metabolism FFA Metabolism Lactic Acid Metabolism Endurance 


Skeletmuskelstoffwechsel Glucosestoffwechsel Milchsäurestoffwechsel Ausdauer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartelmai, W., Czok, R.: Enzymatische Bestimmungen der Glucose in Blut, Liquor und Harn. Klin. Wschr.40, 585–589 (1962).Google Scholar
  2. 2.
    Bing, R. J., Siegel, A., Vitale, A., Balboni, F., Sparks, E., Taeschler, M., Klapper, M., Edwards, S.: Metabolic studies on the human heart in vivo. I. Studies on carbohydrate metabolism of the human heart. Amer. J. Med.15, 284–296 (1953).Google Scholar
  3. 3.
    Chapler, C. K., Stainsby, W. N.: Carbohydrate metabolism in contracting dog skeletal muscle in situ. Amer. J. Physiol.215, 995–1004 (1968).Google Scholar
  4. 4.
    Corsi, A., Midrio, M., Granata, A. L.: In situ utilization of glycogen and blood glucose by skeletal muscle during tetanus. Amer. J. Physiol.216, 1534–1541 (1969).Google Scholar
  5. 5.
    Crane, R. K., Sols, A.: The association of hexokinase with particulate fractions of brain and other tissue homogenates. J. biol. Chem.203, 273–292 (1953).Google Scholar
  6. 6.
    Diamant, B., Karlsson, J., Saltin, B.: Muscle tissue lactate after maximal exercise in man. Acta physiol. scand.72, 383–384 (1968).Google Scholar
  7. 7.
    Dole, V. P., Meinertz, H.: Microdetermination of long-chain fatty acids in plasma and tissues. J. biol. Chem.235, 2595–2599 (1960).Google Scholar
  8. 8.
    Gercken, G.: Die quantitative enzymatische Dehydrierung vonl-(+)-Lactat für die Mikroanalyse. Hoppe-Seylers Z. physiol. Chem.320, 180–186 (1960).Google Scholar
  9. 9.
    Hirche, Hj., Biebrach, M., Grün, D., Müller-Ruchholtz, E. R., Waller, W.: Arbeitsfähigkeit und Glykogengehalt des Skeletmuskels. Pflügers Arch.312, 95 (1969).Google Scholar
  10. 10.
    —, Langohr, H.-D.: Die arteriovenösen Differenzen der gesamten und der einzelnen freien Fettsäuren am Herzen, am Skeletmuskel und an der Niere bei verschieden hoher arterieller Konzentration. Z. ges. exp. Med.146, 67–82 (1968).Google Scholar
  11. 11.
    —, Raff, W. K., Grün, D.: The resistance to blood flow in the gastrocnemius of the dog during sustained and rhythmical isometric and isotonic contractions. Pflügers Arch.314, 97–112 (1970).Google Scholar
  12. 12.
    —, Vollmer, U. J.: Der Substratumsatz des Skeletmuskels bei unterschiedlicher Arbeitsleistung. Pflügers Arch. ges. Physiol.297, R75 (1967).Google Scholar
  13. 13.
    Hultman, E.: Studies on muscle metabolism of glycogen and active phosphate in man with special references to exercise and diet. Stockholm: Tryckeri Balder AB, 1967.Google Scholar
  14. 14.
    Keul, J., Doll, E., Keppler, D.: Muskelstoffwechsel. Die Energiebereitstellung im Skeletmuskel als Grundlage seiner Funktion. München: Joh. Ambr. Barth, 1969.Google Scholar
  15. 15.
    Kramer, K., Quensel, W., Schäfer, K. E.: Untersuchungen über den Muskelstoffwechsel des Warmblüters. IV. Mitteilung. Beziehungen zwischen Sauerstoffaufnahme und Milchsäureabgabe des Muskels während der Tätigkeit. Pflügers Arch. ges. Physiol.241, 730–740 (1939).Google Scholar
  16. 16.
    Lamb, D. R., Peter, J. B., Jeffress, R. N., Wallace, H. A.: Glycogen, hexokinase, and glycogen synthetase adaptation to exercise. Amer. J. Physiol.217, 1628–1632 (1969).Google Scholar
  17. 17.
    Leuthardt, F.: Lehrbuch der Physiologischen Chemie. Berlin: W. de Gruyter & Co. 1961.Google Scholar
  18. 18.
    Miller, H. I., Gold, M., Spitzer, J. J.: Removal and mobilization of individual free fatty acids in dogs. Amer. J. Physiol.202, 370–374 (1962).Google Scholar
  19. 18a.
    Paul, P.: FFA metabolism of normal dogs during steadystate exercise at different work loads. J. appl. Physiol.28, 127–132 (1970).Google Scholar
  20. 19.
    Piiper, J., di Prampero, P. E., Ceretelli, P.: Oxygen consumption and mechanical performance of dog gastrocnemius muscle with artificially increased blood flow. Pflügers Arch.311, 312–325 (1969).Google Scholar
  21. 20.
    ———: Oxygen debt and high-energy phosphates in gastrocnemius muscle of the dog. Amer. J. Physiol.215, 523–531 (1968).Google Scholar
  22. 21.
    P. E. di Prampero, Ceretelli, P., Piiper, J.: Lactic acid formation in gastrocnemius muscle of the dog and its relation to O2 debt contraction. Respirat. Physiol.8, 347–353 (1970).Google Scholar
  23. 22.
    ———: O2 consumption and metabolic balance in the dog gastrocnemius at rest and during exercise. Pflügers Arch.309, 38–47 (1969).Google Scholar
  24. 23.
    Stainsby, W. N., Welch, H. G.: Lactate metabolism of contracting dog skeletal muscle in situ. Amer. J. Physiol.211, 177–183 (1966).Google Scholar
  25. 24.
    Whelan, W. J., Cameron, M. P.: Control of glycogen metabolism. Ciba foundation symposium. London: J. & A. Churchill 1964.Google Scholar
  26. 25.
    Whipp, B. J., Wasserman, K.: Efficiency of muscular work. J. appl. Physiol.26, 644–648 (1969).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Hj. Hirche
    • 1
  • D. Grün
    • 1
  • W. Waller
    • 1
  1. 1.Institute of PhysiologyUniversity of DüsseldorfDusseldorf

Personalised recommendations