Skip to main content
Log in

Different correlations between plasma protein concentration and proximal fractional reabsorption in the rat during acute and chronic saline infusion

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

The effect of acute and chronic saline infusion on filtration and reabsorption in the proximal convolution was investigated in micropuncture experiments on rats. In both acute and chronic infusion single nephron filtration rate and total kidney GFR was increased at equal rates.

During acute saline infusion there was a reduction of both fractional reabsorption (from 60.5 to 41.9%) and plasma protein concentration (from 5.8 to 5.2 g-%). During chronic infusion of about 70% of BW/day for 9–17 days there was only a slight decrease in proximal fractional reabsorption from 57.1 to 52.2%, whereas plasma protein concentration was much more reduced (from 5.9 to 3.6 g-%).

It could be shown that the decrease in plasma protein was accompanied by an even greater reduction of plasma oncotic pressure. We conclude that the variation of peritubular protein concentration and oncotic pressure cannot influence proximal fractional reabsorption under physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bank, N., Koch, K. M., Aynedjian, M. S., Aras, M.: Effect of changes in renal perfusion pressure on the suppression of proximal tubular sodium reabsorption due to saline loading. J. clin. Invest.48, 271 (1969).

    Google Scholar 

  2. Brenner, B. M., Berliner, R. W.: Relationship between extracellular volume and fluid reabsorption in the rat nephron. Amer. J. Physiol.217, 6 (1969).

    Google Scholar 

  3. —, Falchuk, K. H., Keimowitz, R. J., Berliner, R. W.: The relationship between peritubular capillary protein concentration and fluid reabsorption by the renal proximal tubule. J. clin. Invest.48, 1519 (1969).

    Google Scholar 

  4. Brunner, F. P., Rector, F. C., Seldin, D. W.: Mechanism of glomerulotubular balance. II. Regulation of proximal tubular reabsorption by tubular volume, as studied by stopped-flow microperfusion. J. clin. Invest.45, 603 (1966).

    Google Scholar 

  5. Burg, M. B., Orloff, J.: Control of fluid absorption in the renal proximal tubule. J. clin. Invest.47, 2016 (1968).

    Google Scholar 

  6. Cortney, M. A., Mylle, M., Lassiter, W. E., Gottschalk, C. W.: Renal tubular transport of water, solute, and PAH in rats loaded with isotonic saline. Amer. J. Physiol.209, 1199 (1965).

    Google Scholar 

  7. Dirks, J. H., Cirksena, W. J., Berliner, R. W.: The effect of saline infusion on sodium reabsorption by the proximal tubule of the dog. J. clin. Invest.44, 1160 (1965).

    Google Scholar 

  8. Documenta Geigy: Wissenschaftl. Tabellen, 6. Aufl., S. 518 (1960).

  9. Führ, I., Kaczmarczyk, I., Krüttgen, C. D.: Eine einfache Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin. Wschr.33, 729 (1965).

    Google Scholar 

  10. Gertz, K. H., Mangos, J. A., Braun, G., Pagel, H. D.: On the glomerular tubular balance in the rat kidney. Pflügers Arch. ges. Physiol.285, 360 (1965).

    Google Scholar 

  11. Gottschalk, C. W., Mylle, M.: Micropuncture study of pressures in proximal and distal tubules and peritubular capillaries of the rat kidney during osmotic diuresis. Amer. J. Physiol.189, 323 (1957).

    Google Scholar 

  12. Hayslett, J. P., Kashgarian, M., Epstein, F.: Changes in proximal and distal tubular reabsorption produced by rapid expansion of extracellular fluid. J. clin. Invest.46, 1254 (1967).

    Google Scholar 

  13. Hierholzer, K., Wiederholt, M., Stolte, H.: Hemmung der Natriumresporption im proximalen und distalen Konvolut adrenalektomierter Ratten. Pflügers Arch. ges. Physiol.291, 43 (1966).

    Google Scholar 

  14. Hilger, H. H., Klümper, J. D., Ullrich, K. J.: Wasserrückresorption und Ionentransport durch die Sammelrohrzellen der Säugetierniere. Pflügers Arch. ges. Physiol.267, 218 (1958).

    Google Scholar 

  15. Kramer, K., Boylan, J. W., Keck, W.: Regulation of total body sodium in the mammalian organism. Nephron6, 379 (1969).

    Google Scholar 

  16. Landis, E. M.: The capillary pressure in frog mesentery as determined by microinjection methods. Amer. J. Physiol.75, 548 (1926).

    Google Scholar 

  17. Landwehr, D. M., Klose, R. M., Giebisch, G.: Renal tubular sodium and water reabsorption in the isotonic sodium chloride loaded rat. Amer. J. Physiol.212, 1327 (1967).

    Google Scholar 

  18. —, Schnermann, J., Klose, R. M., Giebisch, G.: The effect of acute reduction in glomerular filtration rate on renal tubular sodium and water reabsorption. Amer. J. Physiol.215, 687 (1968).

    Google Scholar 

  19. Lewy, J. E., Windhager, E. E.: Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Amer. J. Physiol.214, 943 (1968).

    Google Scholar 

  20. Mertz, D. P., Sarre, H.: Polyfructosan-S. Eine neue inulinartige Substanz zur Bestimmung des Glomerulumfiltrates und des physiologisch aktiven extrazellulären Flüssigkeitsvolumens beim Menschen. Klin. Wschr.41, 868 (1963).

    Google Scholar 

  21. Morgan, T., Berliner, R. W.: In vivo perfusion of proximal tubules of the rat: glomerulotubular balance. Amer. J. Physiol.217, 992 (1969).

    Google Scholar 

  22. Rector, F. C., Jr., Sellmann, J. C., Martinez-Maldonado, M., Seldin, D. W.: The mechanism of suppression of proximal tubular reabsorption by saline infusions. J. clin. Invest.46, 47 (1967).

    Google Scholar 

  23. Schnermann, J., Horster, M., Levine, D. Z.: The influence of sampling technique on the micropuncture determination of GFR and reabsorptive characteristics of single rat proximal tubules. Pflügers Arch.309, 48 (1969).

    Google Scholar 

  24. —, Levine, D. Z., Horster, M.: A direct evaluation of the Gertz hypothesis on single rat proximal tubules in vivo: failure of the tubular volume to be the sole determinant of the reabsorptive rate. Pflügers Arch.308, 149 (1969).

    Google Scholar 

  25. —, Wahl, M., Liebau, G., Fischbach, H.: Balance between tubular flow rate and net fluid reabsorption in the proximal convolution of the rat kidney. I. Dependency of reabsorptive net fluid flux upon proximal tubular surface area at spontaneous variations of filtration rate. Pflügers Arch.304, 90 (1968).

    Google Scholar 

  26. Spitzer, A., Windhager, E. E.: Effect of peritubular oncotic pressure changes on proximal tubular fluid reabsorption. Amer. J. Physiol.218, 1188 (1970).

    Google Scholar 

  27. Stumpe, K. O., Ochwadt, B.: Wirkung von Aldosteron auf die Natrium- und Wasserresorption im proximalen Tubulus bei chronischer Kochsalzbelastung. Pflügers Arch. ges. Physiol.300, 148 (1968).

    Google Scholar 

  28. Thurau, K., Wober, E.: Zur Lokalisation der autoregulativen Widerstandsänderungen in der Niere. Pflügers Arch. ges. Physiol.274, 553 (1962).

    Google Scholar 

  29. Vereerstraeten, P., Toussaint, E.: Effects of plasmapheresis on renal hemodynamics and sodium excretion in dogs. Pflügers Arch.306, 92 (1969).

    Google Scholar 

  30. Wahl, M., Liebau, G., Fischbach, H., Schnermann, J.: Balance between tubular flow rate and net fluid reabsorption in the proximal convolution of the rat kidney. II. Reabsorptive characteristics during constriction of the renal artery. Pflügers Arch.304, 297 (1968).

    Google Scholar 

  31. —, Nagel, W., Fischbach, H., Thurau, K.: On the application of the occlusion method for measurements of lateral net fluxes in the proximal convolution of the rat kidney. Pflügers Arch. ges. Physiol.298, 141 (1967).

    Google Scholar 

  32. —, Schnermann, J.: Microdissection study of the length of different tubular segments of rat superficial nephrons. Z. Anat. Entwickl.-Gesch.129, 128 (1969).

    Google Scholar 

  33. Wiederholt, M., Hierholzer, K., Windhager, E. E., Giebisch, G.: Microperfusion study of fluid reabsorption in proximal tubules of rat kidney. Amer. J. Physiol.213, 809 (1967).

    Google Scholar 

  34. —, Stolte, H., Brecht, J. P., Hierholzer, K.: Mikropunktionsuntersuchungen über den Einfluß von Aldosteron, Cortison und Dexamethason auf die renale Natriumresorption adrenalektomierter Ratten. Pflügers Arch. ges. Physiol.292, 316 (1966).

    Google Scholar 

  35. Windhager, E. E., Lewy, J. E., Spitzer, A.: Intrarenal control of proximal tubular reabsorption of sodium and water. Nephron6, 247 (1969).

    Google Scholar 

  36. Wirz, H.: Druckmessungen in Kapillaren und Tubuli der Niere. Helv. physiol. pharmacol. Acta13, 42 (1955).

    Google Scholar 

  37. Wright, F. S., Brenner, B. M., Bennett, C. M., Keimowitz, R. J., Berliner, R. W., Schrier, R. W., Verronst, P. J., Wardener, H. E. de., Holzgreve, H.: Failure to demonstrate a hormonal inhibitor of maximal sodium reabsorption. J. clin. Invest.48, 1107 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuschinsky, W., Wahl, M., Wunderlich, P. et al. Different correlations between plasma protein concentration and proximal fractional reabsorption in the rat during acute and chronic saline infusion. Pflugers Arch. 321, 102–120 (1970). https://doi.org/10.1007/BF00586366

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586366

Key-Words

Schlüsselwöter

Navigation