Journal of Materials Science

, Volume 16, Issue 12, pp 3437–3446 | Cite as

Indentation plasticity and fracture of Si3N4 ceramic alloys

  • M. H. Lewis
  • R. Fung
  • D. M. R. Taplin
Contents

Abstract

The response of a series of one- and two-phaseβ-Si3N4 ceramic alloy surfaces to sharp diamond microindentation has been examined by optical and electron microscopy. The microhardness (H), which obeys the load-independent relationH=αP/a2 (whereP anda are load and indent size, respectively) is nearly constant within the alloy series, indicating a retention of high covalency at large (Al and O) substitution levels. Indentation results from severe localized plasticity which is characterized by the operation of the dominant dislocation Burgers vectora[0 0 0 1] in the hexagonalβ lattice. The severe anisotropy in plasticity induces grain-boundary microcracking which is believed to nucleate median cracks which propagate away from the plastic zone on symmetry planes beneath the indenter. The relation between load, median crack size (c) and fracture toughness (Kc) is of the form,Kc=constant (P/c3/2) predicted theoretically. Values ofKc rank correctly with those from notched-beam measurements, but there is uncertainty about the value of the constant.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. H. Lewis, B. D. Powell, P. Drew, R. J. Lumby, B. North andA. J. Taylor,J. Mater. Sci. 12 (1977) 61.Google Scholar
  2. 2.
    B. S. B. Karunaratne andM. H. Lewis,ibid. 15 (1980) 449.Google Scholar
  3. 3.
    Idem, ibid. 15 (1980) 1781.Google Scholar
  4. 4.
    M. H. Lewis andB. S. B. Karunaratne, Proceedings of the American Society for Testing of Metals Symposium on Fracture Mechanics Techniques in Ceramics, Chicago, 1980 (ASTM special technical publication, Philadelphia, in press).Google Scholar
  5. 5.
    M. H. Lewis, A. R. Bhatti, R. J. Lumby andB. North,J. Mater. Sci. 15 (1980) 438.Google Scholar
  6. 6.
    Idem, ibid. 15 (1980) 103.Google Scholar
  7. 7.
    C. A. Brookes, J. B. O'Neill andB. A. W. Redfern,Proc. Roy. Soc. A322 (1971) 73.Google Scholar
  8. 8.
    G. Morgan andM. H. Lewis,J. Mater. Sci. 9 (1974) 349.Google Scholar
  9. 9.
    B. R. Lawn andM. V. Swain,ibid. 10 (1975) 113.Google Scholar
  10. 10.
    B. R. Lawn andD. B. Marshall,J. Amer. Ceram. Soc. 62 (1979) 347.Google Scholar
  11. 11.
    A. G. Evans andT. R. Wilshaw,Acta. Met. 24 (1976) 939.Google Scholar
  12. 12.
    B. R. Lawn andE. R. Fuller,J. Mater. Sci. 10 (1975) 2016.Google Scholar
  13. 13.
    A. G. Evans andE. A. Charles,J. Amer. Ceram. Soc. 59 (1976) 371.Google Scholar
  14. 14.
    S. S. Smith, P. Magnusen andB. J. Pletka, Proceedings of the American Society for Testing of Metals Symposium on Fracture Mechanics Techniques in Ceramics, Chicago, 1980 (ASTM special technical publication, Philadelphia, in press).Google Scholar
  15. 15.
    R. H. Marion in “Fracture Mechanics Applied to Brittle Materials”, ASTM (STP 678) (American Society for Testing Metals, Philadelphia, 1979) p. 103.Google Scholar
  16. 16.
    M. H. Lewis, B. S. B. Karunaratne, J. Meredith andC. Pickering, in “Creep and Fracture of Engineering Materials”, edited by B. Wilshire and D. R. J. Owen (Pineridge Press, Swansea, 1981) p. 365.Google Scholar
  17. 17.
    A. G. Evans andJ. V. Sharp, in “Electron Microscopy and Structure of Materials” edited by G. Thomas, (University of California Press, Berkeley, Calif., 1972) p. 1141.Google Scholar
  18. 18.
    B. R. Lawn andA. G. Evans,J. Mater. Sci. 12 (1977) 2195.Google Scholar
  19. 19.
    J. T. Hagan,ibid. 14 (1979) 2975.Google Scholar
  20. 20.
    B. R. Lawn, A. G. Evans andD. B. Marshall,J. Amer. Ceram. Soc., in press.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1981

Authors and Affiliations

  • M. H. Lewis
    • 1
  • R. Fung
    • 2
  • D. M. R. Taplin
    • 2
  1. 1.Department of PhysicsUniversity of WarwickCoventryUK
  2. 2.University of WaterlooCanada

Personalised recommendations