Skip to main content
Log in

Further studies on the adaptation of fish myofibrillar ATPases to different cell temperatures

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Previous studies on fish Mg2+Ca2+ activated myofibrillar ATPases have been extended to species inhabiting diverse thermal environments. Cold adapted ATPases have considerably higher catalytic centred activities at low temperatures than warm adapted ATPases. Differences in cell temperature have also lead to evolutionary modifications in thermodynamic activation parameters. The free energies (ΔG2+), enthalpies (ΔH2+) and entropies (ΔS2+) of activation of the Mg2+Ca2+ myofibrillar ATPase are positively correlated with adaptation temperature.

Myofibrils with CaATP−2 as substrate in the absence of Mg2+ will hydrolyse ATP by a mechanism not associated with fibril shortening. Differences in activation enthalpies (ΔHH) between cold and warm adapted Ca2+-activated myofibrillar ATPases are less pronounced than for the physiological ATPase. Furthermore the Ca2+-activated ATPase showed no relationship between environmental temperature and substrate turnover number or free energy of activation (ΔG2+).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bárány, M.: ATPase activity of myosin correlated with speed of muscle shortening. J. Gen. Physiol.51, 197–216 (1967)

    Article  Google Scholar 

  • Bendall, J. R.: In: Muscles, molecules and movement, p. 51et seq. London: Heinemann 1969

    Google Scholar 

  • Bullock, T. H.: Compensation for temperature in the metabolism and activity of poikilotherms. Biol. Rev.30, 311–342 (1955)

    CAS  Google Scholar 

  • Connell, J. J.: The relative stabilities of the skeletal muscle myosins of some animals. Biochem. J.80, 503–510 (1961)

    PubMed  CAS  Google Scholar 

  • Connell, J. J.: Properties of fish proteins. In: Proteins, human food. Proc. 16th Easter Sch. Agric. Sci. (R. A. Lawrie, ed.), pp. 220–211. Nottingham, England: University of Nottingham 1969

    Google Scholar 

  • Focant, B., Huriaux, F., Hogge, J. M.: Etude des chaînes légères de la myosine de muscle blanc de carpe. Arch. Int. Physiol. Biochem.82, 985–987 (1974)

    CAS  Google Scholar 

  • Focant, B., Huriaux, F., Johnston, I. A.: Subunit composition of fish myofibrils: The light chains of myosin. Int. J. Biochem.7, 129–133 (1976)

    Article  CAS  Google Scholar 

  • Gornall, A. G., Bardawill, C. S., David, M. M.: Determination of serum proteins by means of the biuret reaction. J. Biol. Chem.177, 751–766 (1949)

    Google Scholar 

  • Hartshorne, D. J., Barns, E. M., Parker, L., Fuchs, F.: The effect of temperature on actomyosin. Biochim. Biophys. Acta267, 190–202 (1972)

    Article  PubMed  CAS  Google Scholar 

  • Hazel, J. R., Prosser, C. L.: Molecular mechanisms of temperature compensation in poikilotherms. Physiol. Rev.54, 620–677 (1974)

    PubMed  CAS  Google Scholar 

  • Johnston, I. A., Tota, B.: Myofibrillar ATPase in the various red and white muscles of the tunny (Thunnus thynnus, L.) and the tub gurnard (Trigla lucerna, L.). Comp. Biochem. Physiol.49B, 367–374 (1974)

    Google Scholar 

  • Johnston, I. A., Walesby, N. J.: Molecular mechanisms of temperature adaptation in fish myofibrillar adenosine triphosphatases. J. Comp. Physiol.B 119, 195–206 (1977)

    CAS  Google Scholar 

  • Johnston, I. A., Frearson, N., Goldspink, G.: Myofibrillar ATPase activities of red and white myotomal muscles of marine fish. Experientia28, 713–714 (1972)

    Article  PubMed  CAS  Google Scholar 

  • Johnston, I. A., Frearson, N., Goldspink, G.: The effects of environmental temperature on the properties of myofibrillar adenosine triphosphatase from various species of fish. Biochem. J.133, 735–738 (1973)

    PubMed  CAS  Google Scholar 

  • Johnston, I. A., Walesby, N. J., Davison, W., Goldspink, G.: Temperature adaptation in myosin of antarctic fish. Nature254, 74–75 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Lehrer, G. M., Barker, R.: Conformational changes in rabbit muscle aldolase. Kinetic Studies. Biochemistry9, 1533–1539 (1970)

    CAS  Google Scholar 

  • Low, P. S., Somero, G. N.: Adaptation of muscle pyruvate kinases to environmental temperatures and pressures. J. Exp. Zool.198, 1–11 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Low, P. S., Bada, J. L., Somero, G. N.: Temperature adaptation of enzymes: role of the free energy, the enthalpy and the entropy of activation. Proc. Natl. Acad. Sci. U.S.A.70, 430–432 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Lowey, S., Slayter, H. S., Weeds, A. G., Baker, H.: Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation. J. Mol. Biol.42, 1–29 (1969)

    Article  PubMed  CAS  Google Scholar 

  • Rockstein, M., Herron, P. W.: Colorimetric determination of inorganic phosphate in microgram quantities. Anal. Chem.23, 1500–1501 (1951).

    Article  CAS  Google Scholar 

  • Solaro, R. J., Pang, D. C., Briggs, F. N.: The purification of cardiac myofibrils with triton X-100. Biochim. Biophys. Acta245, 259–262 (1971)

    Article  PubMed  CAS  Google Scholar 

  • Somero, G. N.: Temperature as a selective factor in protein evolution: the adaptational strategy of “compromise”. J. Exp. Zool.194, 175–188 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Somero, G. N., Low, P. S.: Temperature: A ‘shaping force’ in protein evolution. Biochem. Soc. Symp.46, 33–42 (1976)

    Google Scholar 

  • Taylor, R. S., Weeds, A. G.: The magnesium-ion-dependent adenosine triphosphatase of bovine cardiac myosin and its subfragment-1 Biochem. J.159, 301–315 (1976)

    PubMed  CAS  Google Scholar 

  • Ushakov, B.: Thermostability of cells and proteins in poikilotherms. Physiol. Rev.44, 518–560 (1964)

    PubMed  CAS  Google Scholar 

  • Weeds, A. G., Taylor, R. S.: Separation of subfragment-1 isoenzymes from rabbit skeletal muscle myosin. Nature257, 54–56 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Wagner, P. D., Weeds, A. G.: Studies on the role of myosin alkali light chains. Recombination of hybridization of light chains and heavy chains in subfragment-1 preparations. J. Mol. Biol.109, 455–473 (1977)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, I.A., Walesby, N.J., Davison, W. et al. Further studies on the adaptation of fish myofibrillar ATPases to different cell temperatures. Pflugers Arch. 371, 257–262 (1977). https://doi.org/10.1007/BF00586266

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586266

Key words

Navigation