Summary
Previous studies on fish Mg2+Ca2+ activated myofibrillar ATPases have been extended to species inhabiting diverse thermal environments. Cold adapted ATPases have considerably higher catalytic centred activities at low temperatures than warm adapted ATPases. Differences in cell temperature have also lead to evolutionary modifications in thermodynamic activation parameters. The free energies (ΔG2+), enthalpies (ΔH2+) and entropies (ΔS2+) of activation of the Mg2+Ca2+ myofibrillar ATPase are positively correlated with adaptation temperature.
Myofibrils with CaATP−2 as substrate in the absence of Mg2+ will hydrolyse ATP by a mechanism not associated with fibril shortening. Differences in activation enthalpies (ΔHH) between cold and warm adapted Ca2+-activated myofibrillar ATPases are less pronounced than for the physiological ATPase. Furthermore the Ca2+-activated ATPase showed no relationship between environmental temperature and substrate turnover number or free energy of activation (ΔG2+).
Similar content being viewed by others
References
Bárány, M.: ATPase activity of myosin correlated with speed of muscle shortening. J. Gen. Physiol.51, 197–216 (1967)
Bendall, J. R.: In: Muscles, molecules and movement, p. 51et seq. London: Heinemann 1969
Bullock, T. H.: Compensation for temperature in the metabolism and activity of poikilotherms. Biol. Rev.30, 311–342 (1955)
Connell, J. J.: The relative stabilities of the skeletal muscle myosins of some animals. Biochem. J.80, 503–510 (1961)
Connell, J. J.: Properties of fish proteins. In: Proteins, human food. Proc. 16th Easter Sch. Agric. Sci. (R. A. Lawrie, ed.), pp. 220–211. Nottingham, England: University of Nottingham 1969
Focant, B., Huriaux, F., Hogge, J. M.: Etude des chaînes légères de la myosine de muscle blanc de carpe. Arch. Int. Physiol. Biochem.82, 985–987 (1974)
Focant, B., Huriaux, F., Johnston, I. A.: Subunit composition of fish myofibrils: The light chains of myosin. Int. J. Biochem.7, 129–133 (1976)
Gornall, A. G., Bardawill, C. S., David, M. M.: Determination of serum proteins by means of the biuret reaction. J. Biol. Chem.177, 751–766 (1949)
Hartshorne, D. J., Barns, E. M., Parker, L., Fuchs, F.: The effect of temperature on actomyosin. Biochim. Biophys. Acta267, 190–202 (1972)
Hazel, J. R., Prosser, C. L.: Molecular mechanisms of temperature compensation in poikilotherms. Physiol. Rev.54, 620–677 (1974)
Johnston, I. A., Tota, B.: Myofibrillar ATPase in the various red and white muscles of the tunny (Thunnus thynnus, L.) and the tub gurnard (Trigla lucerna, L.). Comp. Biochem. Physiol.49B, 367–374 (1974)
Johnston, I. A., Walesby, N. J.: Molecular mechanisms of temperature adaptation in fish myofibrillar adenosine triphosphatases. J. Comp. Physiol.B 119, 195–206 (1977)
Johnston, I. A., Frearson, N., Goldspink, G.: Myofibrillar ATPase activities of red and white myotomal muscles of marine fish. Experientia28, 713–714 (1972)
Johnston, I. A., Frearson, N., Goldspink, G.: The effects of environmental temperature on the properties of myofibrillar adenosine triphosphatase from various species of fish. Biochem. J.133, 735–738 (1973)
Johnston, I. A., Walesby, N. J., Davison, W., Goldspink, G.: Temperature adaptation in myosin of antarctic fish. Nature254, 74–75 (1975)
Lehrer, G. M., Barker, R.: Conformational changes in rabbit muscle aldolase. Kinetic Studies. Biochemistry9, 1533–1539 (1970)
Low, P. S., Somero, G. N.: Adaptation of muscle pyruvate kinases to environmental temperatures and pressures. J. Exp. Zool.198, 1–11 (1976)
Low, P. S., Bada, J. L., Somero, G. N.: Temperature adaptation of enzymes: role of the free energy, the enthalpy and the entropy of activation. Proc. Natl. Acad. Sci. U.S.A.70, 430–432 (1973)
Lowey, S., Slayter, H. S., Weeds, A. G., Baker, H.: Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation. J. Mol. Biol.42, 1–29 (1969)
Rockstein, M., Herron, P. W.: Colorimetric determination of inorganic phosphate in microgram quantities. Anal. Chem.23, 1500–1501 (1951).
Solaro, R. J., Pang, D. C., Briggs, F. N.: The purification of cardiac myofibrils with triton X-100. Biochim. Biophys. Acta245, 259–262 (1971)
Somero, G. N.: Temperature as a selective factor in protein evolution: the adaptational strategy of “compromise”. J. Exp. Zool.194, 175–188 (1975)
Somero, G. N., Low, P. S.: Temperature: A ‘shaping force’ in protein evolution. Biochem. Soc. Symp.46, 33–42 (1976)
Taylor, R. S., Weeds, A. G.: The magnesium-ion-dependent adenosine triphosphatase of bovine cardiac myosin and its subfragment-1 Biochem. J.159, 301–315 (1976)
Ushakov, B.: Thermostability of cells and proteins in poikilotherms. Physiol. Rev.44, 518–560 (1964)
Weeds, A. G., Taylor, R. S.: Separation of subfragment-1 isoenzymes from rabbit skeletal muscle myosin. Nature257, 54–56 (1975)
Wagner, P. D., Weeds, A. G.: Studies on the role of myosin alkali light chains. Recombination of hybridization of light chains and heavy chains in subfragment-1 preparations. J. Mol. Biol.109, 455–473 (1977)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Johnston, I.A., Walesby, N.J., Davison, W. et al. Further studies on the adaptation of fish myofibrillar ATPases to different cell temperatures. Pflugers Arch. 371, 257–262 (1977). https://doi.org/10.1007/BF00586266
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00586266


